. 24/7 Space News .
TECH SPACE
Disordered materials could be hardest, most heat-tolerant carbides
by Staff Writers
Durham NC (SPX) Nov 27, 2018

A computer model of the atomic structure of one of the new carbides. The jumbled mess of carbon and five metal elements gives stability to the overall structure.

Materials scientists at Duke University and UC San Diego have discovered a new class of carbides expected to be among the hardest materials with the highest melting points in existence. Made from inexpensive metals, the new materials may soon find use in a wide range of industries from machinery and hardware to aerospace.

A carbide is traditionally a compound consisting of carbon and one other element. When paired with a metal such as titanium or tungsten, the resulting material is extremely hard and difficult to melt. This makes carbides ideal for applications such as coating the surface of cutting tools or parts of a space vehicle.

A small number of complex carbides containing three or more elements also exist, but are not commonly found outside of the laboratory or in industrial applications. This is mostly due to the difficulties of determining which combinations can form stable structures, let alone have desirable properties.

A team of materials scientists at Duke University and UC San Diego have now announced the discovery of a new class of carbides that join carbon with five different metallic elements at once. The results appear online on November 27 in the journal Nature Communications.

Achieving stability from the chaotic mixture of their atoms rather than orderly atomic structure, these materials were computationally predicted to exist by the researchers at Duke University and then successfully synthesized at UC San Diego.

"These materials are harder and lighter in weight than current carbides," said Stefano Curtarolo, professor of mechanical engineering and materials science at Duke. "They also have very high melting points and are made out of relatively cheap material mixtures. This combination of attributes should make them very useful to a wide range of industries."

When students learn about molecular structures, they're shown crystals like salt, which resembles a 3-D checkerboard. These materials gain their stability and strength through regular, ordered atomic bonds where the atoms fit together like pieces of a jigsaw puzzle.

Imperfections in a crystalline structure, however, can often add strength to a material. If cracks start to propagate along a line of molecular bonds, for example, a group of misaligned structures can stop it in its tracks. Hardening solid metals by creating the perfect amount of disorder is achieved through a process of heating and quenching called annealing.

The new class of five-metal carbides takes this idea to the next level. Jettisoning any reliance on crystalline structures and bonds for their stability, these materials rely completely on disorder. While a pile of baseballs won't stand on its own, a pile of baseballs, shoes, bats, hats and gloves just might.

The difficulty lies in predicting which combination of elements will stand firm. Trying to make new materials is expensive and time-consuming. Computing atomic interactions through first principle simulations is even more so. And with five slots for metallic elements and 91 to choose from, the number of potential recipes quickly becomes daunting.

"To figure out which combinations will mix well, you have to do a spectral analysis based on entropy," said Pranab Sarker, a postdoctoral associate in Curtarolo's lab and one of the first authors of the paper. "Entropy is incredibly time-consuming and difficult to calculate by building a model atom-by-atom. So we tried something different."

The team first narrowed the field of ingredients to eight metals known to create carbide compounds with high hardness and melting temperatures. They then calculated how much energy it would take for a potential five-metal carbide to form a large set of random configurations.

If the results were spread far apart, it indicated that the combination would likely favor a single configuration and fall apart - like having too many baseballs in the mix. But if there were many configurations tightly clumped together, it indicated the material would likely form many different structures all at once, providing the disorder needed for structural stability.

The group then tested its theory by getting colleague Kenneth Vecchio, professor of NanoEngineering at UC San Diego, to attempt to actually make nine of the compounds. This was done by combining the elements in each recipe in a finely powdered form, pressing them at temperatures up to 4,000 degrees Fahrenheit and running 2000 Amps of current directly through them.

"Learning to process these materials was a difficult task," said Tyler Harrington, a PhD student in Vecchio's lab and co-first author of the paper. "They behave differently than any materials that we've ever dealt with, even the traditional carbides."

They chose the three recipes their system deemed most likely to form a stable material, the two least likely, and four random combinations that scored in between. As predicted, the three most likely candidates were successful while the two least likely were not. Three of the four intermediate scorers also formed stable structures. While the new carbides are all likely to have desirable industrial properties, one improbable combination stood out - a combination of molybdenum, niobium, tantalum, vanadium and tungsten called MoNbTaVWC5 for short.

"Getting this set of elements to combine is basically like trying to squeeze together a bunch of squares and hexagons," said Cormac Toher, an assistant research professor in Curtarolo's laboratory. "Going on intuition alone, you'd never think that combination would be feasible. But it turns out that the best candidates are actually counterintuitive."

"We don't know its exact properties yet because it hasn't been fully tested," said Curtarolo. "But once we get it into the laboratory in the next couple of months, I wouldn't be surprised if it turned out to be the hardest material with the highest melting point ever made."

"This collaboration is a team of researchers focused on demonstrating the unique and potentially paradigm-changing implications of this new approach," said Vecchio. "We are using innovative approaches to first-principles modeling combined with state-of-the-art synthesis and characterization tools to provide the integrated 'closed-loop' methodology so necessary for advanced materials discovery."

Research Report: "High-Entropy High-Hardness Metal Carbides Discovered By Entropy Descriptors," Pranab Sarker, Tyler Harrington, Cormac Toher, Corey Oses, Mojtaba Samiee, Jon-Paul Maria, Donald W. Brenner, Kenneth S. Vecchio, and Stefano Curtarolo. Nature Communications, 2018. DOI: 10.1038/s41467-018-07160-7


Related Links
Duke University
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
How to melt gold at room temperature
Gothenburg, Sweden (SPX) Nov 26, 2018
When the tension rises, unexpected things can happen - not least when it comes to gold atoms. Researchers from, among others, Chalmers University of Technology, Sweden, have now managed, for the first time, to make the surface of a gold object melt at room temperature. Ludvig de Knoop, from Chalmers' Department of Physics, placed a small piece of gold in an electron microscope. Observing it at the highest level of magnification and increasing the electric field step-by-step to extremely high level ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
ISS Toilet Swarmed By 'Space Bugs' That Could Infect Astronauts - Research

Russia space agency targeted over "stolen" billions

First supply trip to space since Soyuz failure poised to launch

NASA probes 'drug-free' policies, safety at SpaceX, Boeing

TECH SPACE
Arianespace to launch Indian and Korean GEO satellites

Jan. 7 date set for first SpaceX unmanned capsule to International Space Station

Focus on Vega developments

Andre-Hubert Roussel Proposed CEO of ArianeGroup

TECH SPACE
Mars InSight lands on Red Planet

Marsquakes' Mission Successfully Lands On Red Planet

Mars Mole HP3 Arrives at the Red Planet

With InSight on Mars, Scientists Feel Earthly Relief, Get to Work

TECH SPACE
Evolving Chinese Space Ecosystem To Foster Innovative Environment

China sends 5 satellites into orbit via single rocket

China releases smart solution for verifying reliability of space equipment components

China unveils new 'Heavenly Palace' space station as ISS days numbered

TECH SPACE
Kleos Space signs channel partner agreement with IMSL

Airbus to build new generation broadcast satellites to renew Eutelsat HOTBIRD fleet

Goonhilly partners with Airbus, other industry leaders and academics in proposed SmartSat CRC to drive Australia's space sector

Space technology company to set up high-volume production of ultra-powerful LEO satellite platforms

TECH SPACE
South Korea to Buy Updated Missile Defense Radar Systems from Israel

How to melt gold at room temperature

New technique to make objects invisible proposed

NRL demonstrates new non-mechanical laser steering technology

TECH SPACE
New Climate Models of TRAPPIST-1's Seven Intriguing Worlds

Bacteria Likely to Soon Infect ISS Crew Found to Be Antibiotic-Resistant

Exoplanet mission launch slot announced

Quantum artificial life created on the cloud

TECH SPACE
The PI's Perspective: Share the News - The Farthest Exploration of Worlds in History is Beginning

Encouraging prospects for moon hunters

Evidence for ancient glaciation on Pluto

SwRI team makes breakthroughs studying Pluto orbiter mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.