. 24/7 Space News .
Next-gen laser facilities look to usher in new era of relativistic plasmas research
by Staff Writers
Washington DC (SPX) May 27, 2020

Quantum electrodynamics phenomena in plasmas.

The subject of the 2018 Nobel Prize in physics, chirped pulse amplification is a technique that increases the strength of laser pulses in many of today's highest-powered research lasers. As next-generation laser facilities look to push beam power up to 10 petawatts, physicists expect a new era for studying plasmas, whose behavior is affected by features typically seen in black holes and the winds from pulsars.

Researchers released a study taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics (QED) processes. In addition, the proposed new study designs for further exploring these new phenomena.

Appearing in Physics of Plasmas, from AIP Publishing, the article introduces the physics of relativistic plasma in supercritical fields, discusses the current state of the field and provides an overview of recent developments. It also highlights open questions and topics that are likely to dominate the attention of people working in the field over the next several years.

Strong-field QED is a lesser-studied corner of the standard model of particle physics that has not been explored at big collider facilities, such as SLAC National Accelerator Laboratory or CERN, the European Organization for Nuclear Research, due to the lack of strong electromagnetic fields in accelerator settings. With high-intensity lasers, researchers can use strong fields, which have been observed in phenomena such as gamma ray emission and electron-positron pair production.

The group explores how the findings could potentially lead to advances in studies of fundamental physics and in the development of high-energy ion, electron, positron and photon sources. Such findings would be crucial for expanding on many types of scanning technology present today, ranging from materials science studies to medical radiotherapy to next-generation radiography for homeland security and industry.

The QED processes will result in dramatically new plasma physics phenomena, such as the generation of dense electron-positron pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultrarelativistic electron beam, which could penetrate a centimeter of lead by a hair's breadth of laser light.

"What kind of new technology these new plasma physics phenomena might translate is largely unknown, especially because the field of QED plasmas itself is a kind of uncharted territory in physics," author Peng Zhang said. "At the current stage, even adequate theoretical understanding is significantly lacking."

The group hopes the paper will help bring the attention of more researchers to the exciting new fields of QED plasmas.

Research Report: "Relativistic plasma physics in supercritical fields"

Related Links
American Institute Of Physics
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Scientists explore the power of radio waves to help control fusion reactions
Plainsboro NJ (SPX) Apr 29, 2020
A key challenge to capturing and controlling fusion energy on Earth is maintaining the stability of plasma - the electrically charged gas that fuels fusion reactions - and keeping it millions of degrees hot to launch and maintain fusion reactions. This challenge requires controlling magnetic islands, bubble-like structures that form in the plasma in doughnut-shaped tokamak fusion facilities. These islands can grow, cool the plasma and trigger disruptions - the sudden release of energy stored in th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Robert Polsgrove: Commercial Crew to Human Landers

Ultra-thin sail could speed journey to other star systems

NASA chief of human spaceflight resigns ahead of launch

Last of NASA's vital, versatile science 'EXPRESS Racks' heads to Space Station

Aerojet Rocketdyne powers second mission for US Space Force

Pentagon confirms developing a range of hypersonic weapons

Theory of detonation-driven hypervelocity shock tunnels and its demonstration

Soyuz launch from Kourou postponed until 2021, 2 others to proceed

NASA's Curiosity Rover Finds Clues to Chilly Ancient Mars Buried in Rocks

The little tires that could go to Mars

NASA's Perseverance Rover goes through trials by fire, ice, light and sound

Mystery of lava-like flows on Mars solved by scientists

More details of China's space station unveiled

China's tracking ship Yuanwang-5 back from rocket monitoring mission

China's Kuaizhou rocket industrial park partially operational

China's experimental new-generation manned spaceship works normally in orbit

Study explores space's impact on our daily lives

Strings of pearls in the night sky - the Starlink satellite project

India allows private firms, start-ups a sneak peek into ISRO data

Indian space sector reforms: Will it be a big bang approach?

Amazon puts heat on eSports giants with 'Crucible'

Fireflies helps companies get more out of meetings

Study unveils details of how a widely used catalyst splits water

The flame of discovery grows as Saffire sets new fires in space

Statistical analysis reveals odds of life evolving on alien worlds

New study estimates the odds of life and intelligence emerging beyond our planet

Exoplanet climate 'decoder' aids search for life

TRAPPIST-1 planetary orbits not misaligned

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.