. 24/7 Space News .
ENERGY TECH
New turbulent transport modeling shows multiscale fluctuations in heated plasma
by Staff Writers
Washington DC (SPX) Feb 14, 2018

illustration only

Researchers at the DIII-D National Fusion Facility, a DOE Office of Science user facility operated by General Atomics, used a "reduced physics" fluid model of plasma turbulence to explain unexpected properties of the density profile inside a tokamak experiment. Modeling plasma's turbulent behavior could help scientists optimize the tokamak performance in future fusion reactors like ITER.

Applying heat in a tokamak produces many interesting phenomena such as changes in plasma rotation and density. DIII-D researchers modeled how different types of heating, like microwaves that produce electron heating or neutral beams that produce ion heating, influences the plasma density, behavior of impurities and turbulent transport. The different heating methods drive turbulence at the long (ion) scales and much shorter (electron) scales that are at the frontier of turbulence computer simulations.

Their findings, reported this week in Physics of Plasmas, from AIP Publishing, showed that heating the electrons in a fusion reactor caused important changes in density gradients within the plasma.

Their "trapped gyro-Landau fluid" (TGLF) model predicted that adding heat excited turbulence, at wavelengths between the ion and electron scales, and would produce a particle pinch that modifies the plasma's overall density profile. Additionally, in this paper, researchers used their reduced transport model to predict impurity transport in a fusion reactor.

Brian Grierson, a Princeton Plasma Physics Laboratory physicist working as a researcher at the DIII-D National Fusion Facility in San Diego, said that "when you heat the plasma, you don't just change the temperature, you change the type of turbulence that exists, and that has secondary implications on the transport of plasma density and the plasma rotation."

Generally, heat flowing from the hot plasma center to the cold plasma edge drives turbulent diffusion, which should act to flatten the density gradient. "But the fascinating thing is that sometimes applying heat in a fusion reactor causes it to produce a density gradient rather than flatten it," Grierson said.

This density peaking is significant because the fusion reaction between deuterium and tritium particles in a tokamak increases as the density of the plasma increases. In other words, he said, "fusion power is proportional to the [plasma] density squared."

Grierson credits Gary Staebler, a co-author on the paper, as the General Atomics theoretician behind TGLF, the model tested in this paper. TGLF is a reduced physics model of the "full physics" gyrokinetic code GYRO for turbulent transport, which must be run on supercomputers.

Using this more cost-effective TGLF model, researchers were able to execute the code with various experimental measurement and inputs hundreds of times to quantify how uncertainties in the experimental data affect the theoretical interpretation.

Going forward, Grierson hopes that these findings will help inform research to advance the fusion community's understanding of extremely small-scale fluctuations and impurity transport within a plasma.

"We need to understand transport under ion and electron heating to confidently project to future reactors, because fusion power reactors will have both ion and electron heating," Grierson said.

"This result identifies what we need to investigate with the computationally challenging full physics simulations to verify the interaction of particle, momentum and impurity transport with heating."

Research Report: "Multi-scale transport in the DIII-D ITER baseline scenario with direct electron heating and projection to ITER"


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Using lithium to reduce instabilities in fusion plasmas
Plainsboro NJ (SPX) Feb 12, 2018
You may be most familiar with the element lithium as an integral component of your smart phone's battery, but the element also plays a role in the development of clean fusion energy. When used on tungsten surfaces in fusion devices, lithium can reduce periodic instabilities in plasma that can damage the reactor walls, scientists have found. The results, demonstrated by scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and collaborators on China's Experi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
All-in-one service for the Space Station

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

ENERGY TECH
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

ENERGY TECH
Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

Leaky Atmosphere Linked To Lightweight Planet

ENERGY TECH
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

ENERGY TECH
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

ENERGY TECH
Raytheon to upgrade radar systems in Hornet aircraft

Lockheed's 'Dragon Shield' for Finland achieves operational capability

Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

ENERGY TECH
UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

Are you rocky or are you gassy

What the TRAPPIST-1 Planets Could Look Like

ENERGY TECH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.