. 24/7 Space News .
EXO WORLDS
Are you rocky or are you gassy
by Staff Writers
Pasadena CA (SPX) Feb 09, 2018

An artist's impression of a stellar system with three super-Earths.

A star about 100 light years away in the Pisces constellation, GJ 9827, hosts what may be one of the most massive and dense super-Earth planets detected to date according to new research led by Carnegie's Johanna Teske. This new information provides evidence to help astronomers better understand the process by which such planets form.

The GJ 9827 star actually hosts a trio of planets, discovered by NASA's exoplanet-hunting Kepler/K2 mission, and all three are slightly larger than Earth. This is the size that the Kepler mission determined to be most common in the galaxy with periods between a few and several-hundred-days.

Intriguingly, no planets of this size exist in our Solar System. This makes scientists curious about the conditions under which they form and evolve.

One important key to understanding a planet's history is to determine its composition. Are these super-Earths rocky like our own planet? Or do they have solid cores surrounded by large, gassy atmospheres?

To try to understand what an exoplanet is made of, scientists need to measure both its mass and its radius, which allows them to determine its bulk density.

When quantifying planets in this way, astronomers have noticed a trend. It turns out that planets with radii greater than about 1.7 times that of Earth are have a gassy envelope, like Neptune, and those with radii smaller than this are rocky, like our home planet.

Some researchers have proposed that this difference is caused by photoevaporation, which strips planets of their surrounding envelope of so-called volatiles - substances like water and carbon dioxide that have low boiling points - creating smaller-radius planets. But more information is needed to truly test this theory.

This is why GJ 9827's three planets are special - with radii of 1.64 (planet b), 1.29 (planet c) and 2.08 (planet d), they span this dividing line between super-Earth (rocky) and sub-Neptune (somewhat gassy) planets.

Luckily, teams of Carnegie scientists including co-authors Steve Shectman, Sharon Wang, Paul Butler, Jeff Crane, and Ian Thompson, have been monitoring GJ 9827 with their Planet Finding Spectrograph (PFS), so they were able to constrain the masses of the three planets with data in hand, rather than having to scramble to get many new observations of GJ 9827.

"Usually, if a transiting planet is detected, it takes months if not a year or more to gather enough observations to measure its mass," Teske explained.

"Because GJ 9827 is a bright star, we happened to have it in the catalog of stars that Carnegie astronomers been monitoring for planets since 2010. This was unique to PFS."

The spectrograph was developed by Carnegie scientists and mounted on the Magellan Clay Telescopes at Carnegie's Las Campanas Observatory.

The PFS observations indicate that planet b is roughly eight times the mass of Earth, which would make it one of the most-massive and dense super-Earths yet discovered. The masses for planet c and planet d are estimated to be about two and a half and four times that of Earth respectively, although the uncertainty in these two determinations is very high.

This information suggests that planet d has a significant volatile envelope, and leaves open the question of whether planet c has a volatile envelope or not. But the better constraint on the mass of planet b suggests that that it is roughly 50 percent iron.

"More observations are needed to pin down the compositions of these three planets," Wang said.

"But they do seem like some of the best candidates to test our ideas about how super-Earths form and evolve, potentially using NASA's upcoming James Webb Space Telescope."


Related Links
Carnegie Institution for Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
What the TRAPPIST-1 Planets Could Look Like
Bern, Switzerland (SPX) Feb 06, 2018
Researchers at the University of Bern are providing the most precise calculations so far of the masses of the seven planets around the star TRAPPIST-1. From this, new findings are emerging about their density and composition: All TRAPPIST-1 planets consist primarily of rock and contain up to five percent water. This is a decisive step for determining the habitability of these planets. Of the known exoplanets (planets outside our solar system), TRAPPIST-1e is so far the one that is most similar to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
NanoRacks adds Thales Alenia Space to team up on Commercial Space Station Airlock Module

ESA and Airbus sign partnership agreement for new ISS commercial payload platform Bartolomeo

All-in-one service for the Space Station

Marshall tech cleans your air, keeps your beer cold and helps with math

EXO WORLDS
Elon Musk, visionary Tesla and SpaceX founder

Japan Successfully Launches World's Smallest Carrier Rocket

What's next for SpaceX?

Final request for proposal released for Air Force launch services contract

EXO WORLDS
HKU scientist makes key discoveries in the search for life on Mars

Tiny Crystal Shapes Get Close Look From Mars Rover

NASA leverages proven technologies to build agency's first planetary wind lidar

Mars Reconnaissance Orbiter capatures images of splitting slope streaks

EXO WORLDS
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

EXO WORLDS
UK companies seek cooperation with Russia in space technologies

GovSat-1 Successfully Launched on SpaceX Falcon 9 Rocket

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

EXO WORLDS
Helping authorities respond more quickly to airborne radiological threats

Singapore takes next step towards implementing world's first space-based VHF communications

A Detailed Timeline of The IMAGE Mission Recovery

Researchers take terahertz data links around the bend

EXO WORLDS
Are you rocky or are you gassy

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

What the TRAPPIST-1 Planets Could Look Like

EXO WORLDS
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.