. 24/7 Space News .
TIME AND SPACE
New tools reveal prelude to chaos
by Staff Writers
St. Louis MO (SPX) Jun 07, 2018

illustration only

Picture a herd of sheep or cattle emerging from a shed or barn to graze a field. They head straight out of their digs to the pleasure of the pasture pretty much as one entity, but as the land opens up and the "grass gets greener" they disperse randomly in a motion that has neither rhyme nor reason.

Individual animals depart at different angles from the herd and then at different angles from their original departure and so on until "the cows come home."

In physics, this movement that starts off on the straight-and-narrow (ballistic) and is correlated and then dissolves into randomness (diffusive), uncorrelated, is called a ballistic-to-diffusive transition.

Researchers in a number of fields call this motion a "random walk," also known as diffusive motion, a universal phenomenon that occurs in both physical (atomic-cluster diffusion, nanoparticle scattering and bacterial migration) and nonphysical (animal foraging, stock price fluctuations and "viral" internet postings) systems.

Engineers at Washington University in St. Louis have developed mathematical tools that send that shot across the bow - they determine when randomness emerges in any stochastic (random) system, answering a long-standing question: When does randomness set in during a random walk?

Led by Rajan K. Chakrabarty, assistant professor of energy, environmental and chemical engineering, the researchers have provided 11 equations that they applied to directional statistics.

The resulting tools mathematically describe the kinetics in a system right before it dissolves into randomness as well as the walker's turning angle distribution. The tools have the potential to be useful in predicting the onset of chaos in everything from nanoparticles to checking accounts.

The research was published in a recent issue of Physical Review E.

"We hope that we have shown a new starting point to investigate randomness," Chakrabarty said. "We are trying to describe an effect as exactly as possible irrespective of the cause. Now we can see the prelude to chaos so that people might have the ability to intervene and reverse a trend. From this point on, we hope to apply this mathematics to various systems and see how general our predictions are and what needs to be tweaked."

Chakrabarty, whose doctorate is in chemical physics, said that physicists normally solve problems by mathematically describing a cause and effect and marrying the two for a solution. But this new tool cares nothing about the cause, only about mathematically capturing the effect.

Chakrabarty's graduate student, Pai Liu, produced eight of the 11 equations in the paper.

"The research started with the goal of establishing a mathematical relationship to the behavior of chaotic motion," Liu said.

"The equations have a significant time component. We think that we've come up with mathematical formulations, general in nature, that can be applied to any random motion to describe their transport properties and find the critical time step at which the transition from ballistic to diffusive takes place."

Liu P, Heinson W, Sumlin B, Shen K-Y, Chakrabarty R. "Establishing the kinetics of ballistic-to-diffusive transition using directional statistics." Physical Review E, 97, 042102, April 4, 2018. DOI: 10.1103/PhysRevE.97.042102.


Related Links
Washington University in St. Louis
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Data discrepancies may affect understanding of the universe
Dallas TX (SPX) Jun 07, 2018
One of the unsolved mysteries in modern science is why the expansion of the universe appears to be accelerating. Some scientists argue it is due to a theoretical dark energy that counteracts the pull of gravity, while others think Albert Einstein's long-accepted theory of gravity itself may need to be modified. As astrophysicists look for answers in the mountains of data gathered from astronomical observations, they are finding that inconsistencies in that data might ultimately lead to the truth. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Second Space Station mission for Alexander Gerst begins

New Era of Space Exploration is "Internet of Tomorrow"

Crew from Germany, US, Russia board ISS

New crew blasts off for ISS

TIME AND SPACE
US Senate introduces measure to upgrade defense against hypersonic threats

First Engine Assembled for DARPA and Boeing Reusable Experimental Spaceplane

Lockheed Martin Wins Potential $928 Million Contract to Develop New Hypersonic Missile for the Air Force

Watch live: SpaceX to launch SES-12 communications satellite

TIME AND SPACE
Mars rover Opportunity hunkers down during dust storm

More building blocks of life found on Mars

Curiosity rover finds organic matter, unidentified methane source on Mars

NASA finds ancient organic material, mysterious methane on Mars

TIME AND SPACE
Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

China develops wireless systems for rockets

TIME AND SPACE
Liftoff as Alexander Gerst returns to space

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

The European Space Agency welcomes European Commission's proposal on space activities

Spain's first astronaut named science minister

TIME AND SPACE
JUICE comes in from extreme temperature test

Cooling by laser beam

Large-scale and sustainable 3D printing with the most ubiquitous natural material

Engineers convert commonly discarded material into high-performance adhesive

TIME AND SPACE
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

Researchers discover a system with three Earth-sized planets

TIME AND SPACE
Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby

Collective gravity, not Planet Nine, may explain the orbits of 'detached objects'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.