. 24/7 Space News .
TECH SPACE
New toolkit aids discovery of mineral deposits crucial to 'green economy' transition
by Staff Writers
Exeter UK (SPX) Mar 17, 2022

An open cut copper mine in Cuajone, Peru.

Scientists have developed a new toolkit for the discovery of mineral deposits crucial to our transition to a 'green economy'.

A study led by Lawrence Carter from the University of Exeter's Camborne School of Mines, has given fascinating new insights into how to discover porphyry-type copper deposits.

Porphyry-type deposits provide most of the world's copper and molybdenum, as well as large amounts of gold and other metals, which are of increasing demand for green technologies such as electric vehicles, wind turbines and solar panels, and for power transmission. They are the principle target of many mining companies who employ a wide range of invasive and expensive exploration techniques to find them.

Porphyry-type deposits originally form several kilometres below the Earth's surface above large magma chambers. Not only are they rare but most large near-surface examples have already been found. To meet future demand for copper, new methods are needed to discover deeper and possibly smaller deposits - using techniques that meet increasingly strict environmental regulations.

The researchers show that certain textures preserved in rock may be indicative of the types of physical processes that form these deposits, and may give an early indication of their location.

Previous understanding of such textures was disjointed because they are often small, poorly exposed or are simply not recognised when encountered.

The new study was carried out in the Yerington district of Nevada where tilting of the upper crust has provided a globally unique cross-section through four porphyry-type deposits and their host rocks. Because of this, previous studies in the district have underpinned much of the current understanding of how porphyry-type deposits form.

Lawrence Carter, a final year PhD student and Research Associate at Camborne School of Mines, based at the University of Exeter's Penryn Campus said: 'We provide a textural framework for exploration geologists to assess the likely 3D architecture of porphyry-type deposits before employing more invasive and expensive techniques.'

Professor Ben Williamson, co-author of the study and Associate Professor in Applied Mineralogy at Camborne School of Mines added: 'this innovative applied study, led by one of the UK's leading young geo-scientists, will provide much needed field criteria for the discovery of economically important and green-technology-crucial porphyry-type deposits.'

Research Report: "Textural indicators of mineralisation potential in porphyry magmatic systems - a framework from the archetypal Yerington district, Nevada"


Related Links
University of Exeter
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
The untapped nitrogen reservoir
Konstanz, Germany (SPX) Mar 10, 2022
Guanidine is one of the most nitrogen-rich compounds. It could be a valuable source of organic nitrogen, but only very few organisms can access it. However, certain bacteria manage to obtain nitrogen from guanidine. A Konstanz-based research team led by chemist Professor Jorg Hartig and biologist Professor Olga Mayans has now discovered how this works. A newly discovered enzyme plays a key role - and, surprisingly, so does nickel. The research results were published on 9 March 2022 in the scientific jou ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA says Mark Vande Hei will return from ISS on Russian spacecraft

Space Station to host 'self-healing' quantum communications tech demo

'TechWorks' brings dreams of Jordan inventors to life

How to reach a tumbling target in space

TECH SPACE
China tests rocket engine for upcoming space lab launches

Virgin Orbit to launch first Welsh satellite from UK Spaceport Summer 2022

SpaceX launches 48 Starlink satellites amid Ukraine crisis

Russia stops deliveries of rocket engines to US, Roscosmos Head Says

TECH SPACE
NASA extends Ingenuity Helicopter Mission

Sol 3411: Bonanza

Moving right along - slowly but surely during Sols 3409-3410

Challenges await sample-return expedition to Mars

TECH SPACE
China launches seven new satellites

China's space station to host 6 astronauts by end of 2022

Tiangong scheduled for completion this year

China establishes deep space exploration laboratory

TECH SPACE
Sidus Space completes LizzieSat Preliminary Design Review

Fleet Space Technologies teams up with Seven Sisters Consortium

SpaceX plans another Starlink launch as Ukraine uses the service during conflict

Sidus Space teams with Aitech Systems to support LizzieSat constellation

TECH SPACE
Scientists, undergraduates team up to protect astronauts from radiation

New toolkit aids discovery of mineral deposits crucial to 'green economy' transition

The untapped nitrogen reservoir

Tiny switches give solid-state LiDAR record resolution

TECH SPACE
"Seafloor fertilizer factory" helped breathe life into Earth

Imagining an Earthly neighbor

The start of the birth of planets in a binary star system observed

Expedition to highest active volcano unearths clues about life on other worlds

TECH SPACE
NASA begins assembly of Europa Clipper

NASA starts building Europa Clipper to investigate icy, ocean moon of Jupiter

New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.