. 24/7 Space News .
STELLAR CHEMISTRY
New study suggests tens of thousands of black holes exist in Milky Way's center
by Staff Writers
New York NY (SPX) Apr 05, 2018

Columbia astrophysicists have discovered 12 black hole-low mass binaries orbiting Sgr A* at the center of the Milky Way galaxy. Their existence suggests there are likely about 10,000 black holes within just three light years of the Galactic Center.

A Columbia University-led team of astrophysicists has discovered a dozen black holes gathered around Sagittarius A* (Sgr A*), the supermassive black hole in the center of the Milky Way Galaxy. The finding is the first to support a decades-old prediction, opening up myriad opportunities to better understand the universe.

"Everything you'd ever want to learn about the way big black holes interact with little black holes, you can learn by studying this distribution," said Columbia Astrophysicist Chuck Hailey, co-director of the Columbia Astrophysics Lab and lead author on the study. "The Milky Way is really the only galaxy we have where we can study how supermassive black holes interact with little ones because we simply can't see their interactions in other galaxies. In a sense, this is the only laboratory we have to study this phenomenon."

For more than two decades, researchers have searched unsuccessfully for evidence to support a theory that thousands of black holes surround supermassive black holes (SMBHs) at the center of large galaxies.

"There are only about five dozen known black holes in the entire galaxy - 100,000 light years wide - and there are supposed to be 10,000 to 20,000 of these things in a region just six light years wide that no one has been able to find," Hailey said, adding that extensive fruitless searches have been made for black holes around Sgr A*, the closest SMBH to Earth and therefore the easiest to study. "There hasn't been much credible evidence."

He explained that Sgr A* is surrounded by a halo of gas and dust that provides the perfect breeding ground for the birth of massive stars, which live, die and could turn into black holes there. Additionally, black holes from outside the halo are believed to fall under the influence of the SMBH as they lose their energy, causing them to be pulled into the vicinity of the SMBH, where they are held captive by its force.

While most of the trapped black holes remain isolated, some capture and bind to a passing star, forming a stellar binary. Researchers believe there is a heavy concentration of these isolated and mated black holes in the Galactic Center, forming a density cusp which gets more crowded as distance to the SMBH decreases.

In the past, failed attempts to find evidence of such a cusp have focused on looking for the bright burst of X-ray glow that sometimes occurs in black hole binaries

"It's an obvious way to want to look for black holes," Hailey said, "but the Galactic Center is so far away from Earth that those bursts are only strong and bright enough to see about once every 100 to 1,000 years." To detect black hole binaries then, Hailey and his colleagues realized they would need to look for the fainter, but steadier X-rays emitted when the binaries are in an inactive state.

"It would be so easy if black hole binaries routinely gave off big bursts like neutron star binaries do, but they don't, so we had to come up with another way to look for them," Hailey said.

"Isolated, unmated black holes are just black - they don't do anything. So looking for isolated black holes is not a smart way to find them either. But when black holes mate with a low mass star, the marriage emits X-ray bursts that are weaker, but consistent and detectable. If we could find black holes that are coupled with low mass stars and we know what fraction of black holes will mate with low mass stars, we could scientifically infer the population of isolated black holes out there."

Hailey and colleagues turned to archival data from the Chandra X-ray Observatory to test their technique. They searched for X-ray signatures of black hole-low mass binaries in their inactive state and were able to find 12 within three light years, of Sgr A*. The researchers then analyzed the properties and spatial distribution of the identified binary systems and extrapolated from their observations that there must be anywhere from 300 to 500 black hole-low mass binaries and about 10,000 isolated black holes in the area surrounding Sgr A*.

"This finding confirms a major theory and the implications are many," Hailey said. "It is going to significantly advance gravitational wave research because knowing the number of black holes in the center of a typical galaxy can help in better predicting how many gravitational wave events may be associated with them. All the information astrophysicists need is at the center of the galaxy."

Hailey's co-authors on the paper include: Kaya Mori, Michael E. Berkowitz, and Benjamin J. Hord, all of Columbia University; Franz E. Bauer, of the Instituto de Astrofisica, Facultad de Fisica, Pontificia, Universidad Catolica de Chile, Millennium Institute of Astrophysics, Vicuna Mackenna, and the Space Science Institute; and Jaesub Hong, of Harvard-Smithsonian Center for Astrophysics.

The study appears in the April 5 issue of Nature.

Research paper


Related Links
Columbia University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
First age-map of the heart of the Milky Way
Liverpool UK (SPX) Apr 04, 2018
The first large-scale age-map of the Milky Way shows that a period of star formation lasting around 4 billion years created the complex structure at the heart of our galaxy. The results will be presented by Marina Rejkuba at the European Week of Astronomy and Space Science (EWASS) in Liverpool on Tuesday, 3rd April. The Milky Way is a spiral galaxy with a bulge at the centre, thousands of light years in diameter, that contains about a quarter of the total mass of stars. Previous studies have shown ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA accepting applications for mission control leaders

Out of this world: Inside Japan's space colony centre

Aerospace Tech Startups Get a Chance to Pitch at JPL

US astronauts make spacewalk to perform ISS repairs

STELLAR CHEMISTRY
University student projects launch from NASA Wallops

SpaceX launches cargo to space station using recycled rocket, spaceship

New research payloads heading to ISS on SpaceX Resupply Mission

Funds shortage pulls the brakes on India's crucial space programs

STELLAR CHEMISTRY
Opportunity making extensive study of rock target Aguas Calientes

Curiosity rover gets ready for its next adventure

First test success for largest Mars mission parachute

Opportunity Completes In-Situ Work on 'Aguas Calientes'

STELLAR CHEMISTRY
Earth-bound Chinese spacelab plunging to fiery end

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

STELLAR CHEMISTRY
Relativity Space raises 35M in Series B funding

Storm hunter launched to International Space Station

SSL to build direct broadcasting satellite for B-SAT

SpaceX says Iridium satellite payload deployed

STELLAR CHEMISTRY
The Problem With Space Junk is We Don't Know Where Most Objects Are

Finding order in disorder demonstrates a new state of matter

Mars mission: how increasing levels of space radiation may halt human visitors

Point Nemo, Earth's watery graveyard for spacecraft

STELLAR CHEMISTRY
NASA prepares to launch next ExoPlanet mission

Is there life adrift in the clouds of Venus?

Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

STELLAR CHEMISTRY
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.