. 24/7 Space News .
ICE WORLD
New study shows retreat of East Antarctic ice sheet during previous warm periods
by Staff Writers
Santa Cruz CA (SPX) Aug 03, 2020

illustration only

Questions about the stability of the East Antarctic Ice Sheet are a major source of uncertainty in estimates of how much sea level will rise as the Earth continues to warm. For decades, scientists thought the East Antarctic Ice Sheet had remained stable for millions of years, but recent studies have begun to cast doubt on this idea. Now, researchers at UC Santa Cruz have reported new evidence of substantial ice loss from East Antarctica during an interglacial warm period about 400,000 years ago.

The study, published July 22 in Nature, focused on the Wilkes Basin, one of several bowl-like basins at the edges of the ice sheet that are considered vulnerable to melting because the ice rests on land that is below sea level. The Wilkes Basin currently holds enough ice to raise sea level by 3 to 4 meters (10 to 13 feet).

Ice flows slowly through the basins from the interior of the continent out to the floating ice shelves at the margins. Ice loss causes the grounding line - the point at which the ice loses contact with the ground and starts floating - to shift inland, explained first author Terrence Blackburn, assistant professor of Earth and planetary sciences at UC Santa Cruz.

"Our data shows that the grounding line in the Wilkes Basin retreated 700 kilometers [435 miles] inland during one of the last really warm interglacials, when global temperatures were 1 to 2 degrees Celsius warmer than now," Blackburn said. "That probably contributed 3 to 4 meters to global sea level rise, with Greenland and West Antarctica together contributing another 10 meters."

In other words, a period of global warming comparable to what is expected under current scenarios for manmade greenhouse gas emissions resulted in an increase in sea level of around 13 meters (43 feet). Of course, this wouldn't happen all at once - it takes time for that much ice to melt.

"We've opened the freezer door, but that block of ice is still cold and it's not going anywhere in the short term," Blackburn said. "To understand what will happen over longer time scales, we need to see what happened under comparable conditions in the past."

The problem with studying the interglacial periods during the Pleistocene is that they all ended in another ice age when the ice sheet advanced again and covered up the evidence. For the new study, Blackburn and his colleagues used a novel technique based on isotope measurements in mineral deposits that record past changes in subglacial fluids.

Uranium-234 (U-234) is an isotope of uranium that accumulates very slowly in water that is in contact with rocks due to the high-energy decay of uranium-238. This happens everywhere, but in most places hydrological processes carry water away from sources of enrichment, and the U-234 gets diluted in large bodies of water. In Antarctica, however, water is trapped at the base of the ice sheet and moves very slowly as long as the ice is stable, allowing U-234 to build up to very high levels over long periods of time.

Blackburn explained that the ice sheet acts like an insulating blanket, so that heat from Earth's interior causes melting at the base. But temperatures are colder where the ice is thinner at the margins of the ice sheet, causing subglacial water to refreeze.

"Water flowing beneath the ice starts refreezing at the edges, which concentrates all the dissolved minerals until it becomes supersaturated and the minerals precipitate out to form deposits of opal or calcite," he said. "Those deposits trap uranium-234, so we can date the deposits and measure their composition, and we can track that through time to get a deep history of the composition of water under the ice sheet."

What that history suggests is that the U-234 in subglacial water in the Wilkes Basin was flushed out during the interglacial period 400,000 years ago as the ice melted and the grounding line retreated. That reset the U-234 concentration to low background levels, and accumulation then restarted when the ice advanced again.

Blackburn noted that present-day evidence for the accumulation of U-234 in subglacial fluids can be found in the McMurdo Dry Valleys, the only place where Antarctic glaciers terminate on land. There, highly concentrated brines emerge from the glaciers in places such as Blood Falls, where the blood-red color comes from high iron concentrations in the brine.

"The isotopic compositions of those brines are comparable to the precipitates that we've dated from a range of locations, and they all share the characteristic U-234 enrichment," Blackburn said. "The brines are what's left when the subglacial fluids get all the way to the edge of the ice sheet."

He said the new study was inspired by a 2016 paper in which researchers studying deep-sea corals reported evidence of a major change in ocean chemistry, including a spike in U-234, coinciding with the end of the last ice age, when the vast Laurentide Ice Sheet that covered much of North America melted.

"They speculated that it accumulates under the ice sheets and pointed to some possible sites in Antarctica where that might be happening," Blackburn said. "I happened to be in one of those places at the time."

So was his colleague, glaciologist Slawek Tulaczyk, a professor of Earth and planetary sciences at UC Santa Cruz. They discussed the paper and began planning this study, which eventually involved several UCSC faculty and students. The team collected some samples of mineral deposits themselves, but some of the most important samples used in the study were collected in the 1980s and archived at the Byrd Polar Rock Repository at Ohio State University.

Research paper


Related Links
University Of California - Santa Cruz
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
Antarctica more widely impacted by humans than previously thought
Johannesburg, South Africa (SPX) Jul 27, 2020
Antarctica is considered one of the Earth's largest, most pristine remaining wildernesses. Yet since its formal discovery 200 years ago, the continent has seen accelerating and potentially impactful human activity. How widespread this activity is across the continent has never been quantified. We know Antarctica has no cities, agriculture or industry. But we have never had a good idea of where humans have been, how much of the continent remains untouched or largely unimpacted, and to what extent t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

Take Me to Mars

ICE WORLD
Russia wants to return to Venus, build reusable rocket

SpaceX completes test flight of Mars rocket prototype

SpaceX launched 10th Starlink batch

Spaceflight and Benchmark sign green propulsion deal for Sherpa launcher

ICE WORLD
NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

Lava tubes on Mars and the Moon are so wide they can host planetary bases

ICE WORLD
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

ICE WORLD
Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

Hisdesat And XTAR Complete Transaction For XTAR-EUR Satellite

ICE WORLD
Scientists find way to track space junk in daylight

At Aerospace: How Internships Went Virtual

First laser detection of space debris in daylight

Transforming e-waste into a strong, protective coating for metal

ICE WORLD
Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

VLBA finds planet orbiting small, cool star

Surprisingly dense exoplanet challenges planet formation theories

Deep sea microbes dormant for 100 million years are hungry and ready to multiply

ICE WORLD
Ammonia sparks unexpected, exotic lightning on Jupiter

Shallow Lightning and Mushballs reveal ammonia to Juno scientists

NASA's Webb Telescope Will Study Jupiter, Its Rings, and Two Intriguing Moons

NASA Juno takes first images of Ganymede's North Pole









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.