. 24/7 Space News .
New study examines how many moons an earth-mass planet could host
by Greg Pederson for UTA News
Arlington, TX (SPX) Aug 24, 2022

illustration only

A new study by a trio of physics researchers attempts to quantify how many moons the Earth, or an exoplanet with the mass of Earth orbiting a Sun-like star, could host in its orbit. Their findings: Anywhere from three to seven, depending on the moon's mass.

The study, titled "Moon-packing around an Earth-mass planet", was published in the August 1 online edition of the Monthly Notices of the Royal Astronomical Society. Lead author is Suman Satyal, adjunct assistant professor in physics at The University of Texas at Arlington. Satyal earned his Ph.D. in Physics from UTA in 2014.

Co-authors are Billy Quarles, who earned a Ph.D. in Physics from UTA in 2012 and is an assistant professor of astronomy and physics at Valdosta State University in Georgia; and Marialis Rosario-Franco, who earned a Ph.D. in Physics from UTA in 2021 and is an assistant teaching professor in astrophysical and planetary sciences at the University of Colorado at Boulder.

The Earth has a single moon and Mars has two, while neither Mercury nor Venus has any. But some of the Solar System's giant planets, including Jupiter and Saturn, have dozens.

"Most planets in our Solar System contain multiple moons," Satyal said. "Notably, giant planets like Jupiter and Saturn host approximately 80 moons. But the rocky planet Mars hosts two moons and Earth hosts one. These discrepancies could be tied to different formation mechanism and orbital evolution processes."

In their study, the team used a series of N-body simulations, which approximate the motion of particles, to answer the question of how many moons could stably orbit Earth or an Earth-mass exoplanet.

"Our model ignores the gravitational effects of all the other planets within the Solar System," Quarles said. "This is important when we look beyond the Solar System because there are a large number of systems with only a single planet candidate. There are currently two exomoon candidates, but they both orbit Jupiter-like planets at about one astronomical unit (approximately 150 million km or 93 million miles)."

The team's study set the N-body simulation of multiple moons between the inner (Roche radius) and outer (Hill radius) stability limits for orbital bodies. In theory, a moon would be disintegrated by the host planet's tidal forces if it were to orbit inside the Roche radius, and would escape the planet's gravitational field if it were to orbit outside the Hill radius.

"However, the numerical studies have shown that the practical stability limits are within twice the Roche radius and about half of the Hill radius," Satyal said. "Thus, we started the simulation of multiple moons (up to nine) between these reduced boundary limits and checked how many of them survived until the end of the simulation time."

The team used moons with the mass of Ceres, Pluto, and Luna (Earth's own moon) as prototype masses to compute orbital stability constraints. They found an upper limit of three Luna-mass moons, four Pluto-mass moons, and seven Ceres-mass moons which could orbit an exoplanet with the mass of Earth.

Even though approximately 5,000 known exoplanets have the probability of hosting tens of hundreds of exomoons, no confirmed exomoons have been detected yet. There are other observational constraints and limitations for such non-detection, Satyal said.

"For future observations, we believe that this work has great implications as it limits the existence of exomoons for Earth analogs in their respective habitable zones," Satyal said. "With improvements in telescope sensitivity, such as the recently launched James Webb Space Telescope, we may be able to apply the transit method (measuring the depth in the starlight) to detect exomoons. Since it is possible for rocky planets, like Earth, to host more than one moon, it increases the probability of their detection. Such detection, and even a theoretical possibility, would beg the answer for the question regarding their formation scenario."

"As the search for exomoons around Earth-like planets continues, our paper provides an upper limit to how many moons we should expect," Quarles said. "If the observations suggest multiple exomoon candidates, some of those could be ruled out by either our current work or potentially through previous work performed by scientists at UTA. All four giant planets of the Solar System host multiple moons, so we may find exomoons to come in multiples as well."

Quarles noted that the new study could have cultural significance with regard to depictions of exomoons in science fiction films and other media.

"While we were performing our investigation, I watched the movie Stargate and noticed that the extragalactic planet that the team travels to has three moons," he said. "Many films illustrate the possibility of exomoons, such as Pandora from Avatar, or the forest moon Endor from Star Wars. Our study could help future works appear more astronomically accurate."

Related Links
UTA College of Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Breaking in a new planet
West Lafayette IN (SPX) Aug 23, 2022
The harder you hit something - a ball, a walnut, a geode - the more likely it is to break open. Or, if not break open, at least lose a little bit of its structural integrity, the way baseball players pummel new gloves to make them softer and more flexible. Cracks, massive or tiny, form and bear a silent, permanent witness to the impact. Studying how those impacts affect planetary bodies, asteroids, moons and other rocks in space helps planetary scientists including Brandon Johnson, associate profe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Russian spacewalk cut short due to issue with suit

US should end ISS collaboration with Russia

Boeing eyes February for space capsule's first crewed flight

45 years after launch, NASA's Voyager probes still blazing trails billions of miles away

Orbex to hire fifty new staff over next six months, in final countdown to UK rocket launch

NASA's new rocket on launchpad for trip to Moon

China launches new satellite via Kuaizhou 1A carrier rocket

Russia's only female cosmonaut says 'ready' for Crew Dragon flight

Sol 3565: Over, Around, and Through

New research sheds light on when Mars may have had water

Harvesting resources on Mars with plasmas

A World of Firsts

China conducts spaceplane flight test

103rd successful rocket launch breaks record

Chinese space-tracking ship docks at Sri Lanka's Hambantota port

Shenzhou XIV astronauts to conduct their first spacewalk in coming days

SpaceX and T-Mobile unveil satellite plan to end cellphone 'dead zones'

Introducing Huginn

On the front lines of space innovation

NASA scientists study how to remove planetary photobombers

Quantum Dot instrument enables spacecraft-as-sensor concept

Leanspace and Valispace team up to demonstrate the power of Digital Continuity in space mission management

North American Helium brings third helium facility into production

By design: from waste to next-gen carbon fiber

New study examines how many moons an earth-mass planet could host

Webb telescope finds CO2 for first time in exoplanet atmosphere

Breaking in a new planet

Case solved: missing carbon monoxide was hiding in the ice

Uranus to begin reversing path across the night sky on Wednesday

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Underwater snow gives clues about Europa's icy shell

Why Jupiter doesn't have rings like Saturn

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.