. 24/7 Space News .
EARTH OBSERVATION
New satellite-based algorithm pinpoints crop water use
by Staff Writers
Urbana IL (SPX) Mar 23, 2020

Peak growing season (June, July, and August) BESS-STAIR ET/PET at Bondville (39.95-40.05 degrees ?N, 88.25-88.35 degrees ?W) from 2001 through 2017 along with two scatter plots between peak growing season precipitation and ET/PET and peak growing season VPD and ET/PET over the 17 years. Precipitation and VPD data are from Daily Surface Weather Data (Daymet) at Bondville, Illinois (https://modis.ornl.gov/cgi-bin/sites/site/?id=us_illinois_bondville&product=Daymet, last access: 11 March 2020), where VPD is derived using maximum air temperature and water vapor pressure. Circles indicate flux towers in this region.

The growing threat of drought and rising water demand have made accurate forecasts of crop water use critical for farmland water management and sustainability.

But limitations in existing models and satellite data pose challenges for precise estimates of evapotranspiration - a combination of evaporation from soil and transpiration from plants. The process is complex and difficult to model, and existing remote-sensing data can't provide accurate, high-resolution information on a daily basis.

A new high-resolution mapping framework called BESS-STAIR promises to do just that, around the globe. BESS-STAIR is composed of a satellite-driven biophysical model integrating plants' water, carbon and energy cycles - the Breathing Earth System Simulator (BESS) - with a generic and fully automated fusion algorithm called STAIR (SaTellite dAta IntegRation).

The framework, developed by researchers with the U.S. Department of Energy's Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) at the University of Illinois at Urbana-Champaign, was tested in 12 sites across the U.S. Corn Belt, and its estimates have achieved the highest performance reported in any academic study so far.

The study, published in Hydrology and Earth System Sciences, was led by Postdoctoral Research Associate Chongya Jiang, from CABBI's sustainability theme, and project lead Kaiyu Guan, Assistant Professor in the Department of Natural Resources and Environmental Sciences (NRES) and a Blue Waters Professor at the National Center for Supercomputing Applications (NCSA).

"BESS-STAIR has great potential to be a reliable tool for water resources management and precision agriculture applications for the U.S. Corn Belt and even worldwide, given the global coverage of its input data," Jiang said.

Traditional remote-sensing methods for estimating evapotranspiration rely heavily on thermal radiation data, measuring the temperature of the plant canopy and soil as they cool through evaporation. But those methods have two drawbacks: the satellites can't collect data on surface temperatures on cloudy days; and the temperature data aren't very accurate, which in turn affects the accuracy of the evapotranspiration estimates, Jiang said.

The CABBI team instead focused on the plant's carbon-water-energy cycles. Plants transpire water into the atmosphere through holes on their leaves called stomata. As the water goes out, carbon dioxide comes in, allowing the plant to conduct photosynthesis and form biomass.

The BESS-STAIR model first estimates photosynthesis, then the amount of carbon and water going in and out. Previous remote-sensing methods did not consider the carbon component as a constraint, Jiang said. "That's the advance of this model."

Another advantage: Surface temperature-based methods can only collect data under clear skies, so they have to interpolate evapotranspiration for cloudy days, creating gaps in the data, he said. The all-weather BESS-STAIR model uses surface reflectance, which is similar on clear and cloudy days, eliminating any gaps.

The STAIR algorithm fused data from two complementary satellite systems - Landsat and MODIS - to provide high-resolution data on a daily basis, providing both high spatial and high temporal resolution. Landsat collects detailed information about Earth's land every eight to 16 days; MODIS provides a complete picture of the globe every day to capture more rapid land surface changes.

This isn't the first time researchers have combined data from the two satellite sensors, but previous methods only worked in a small region over a short time period, Guan said. The previous algorithms were difficult to scale up and weren't fully automatic, requiring significant human input, and they couldn't be applied across broad areas over a longer time period.

By contrast, the CABBI team's framework was evaluated in different regions across the U.S. Corn Belt over two decades, Jiang said. Researchers built a pipeline on NCSA's supercomputer to automatically estimate surface reflectance as well as evapotranspiration on a large scale for extended time periods. Using data from 2000 to 2017, the team applied BESS-STAIR in 12 sites across the Corn Belt, comprehensively validating its evapotranspiration estimates with flux tower measurements at each site. They measured overall accuracy as well as and spatial, seasonal, and interannual variations.

"We are able to provide daily, 30m-resolution evapotranspiration anytime and anywhere in the U.S. Corn Belt in hours, which is unprecedented," Guan said.

The breakthrough will have real-time, practical benefits for U.S. farmers coping with the increasing severity of droughts, as documented in a number of recent studies.

"Precision agriculture is one of our major targets. Evapotranspiration is very important for irrigation and also very important to water management," Guan said. "This is a solution that goes beyond experimental plots and impacts the real world, for millions of fields everywhere."

Research paper


Related Links
University Of Illinois At Urbana-Champaign Institute For Sustainability, Energy, And Environment
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
China's polar-observing satellite completes Antarctic mission
Beijing (XNA) Mar 16, 2020
China's first polar-observing satellite has completed its Antarctic observation mission after orbiting Earth for six months. Since it was launched on Sept. 12, 2019, the satellite called "Ice Pathfinder" (Code: BNU-1) has sent back more than 1,000 images covering the south polar region, according to a statement by its operation team Friday. It has observed two vast ice collapses in the continent, one occurred on the Amery Ice Shelf on Sept. 25, 2019, and the other on the Pine Island Glacier ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Insects, seaweed and lab-grown meat could be the foods of the future

Beyond human toll, coronavirus could shake up global politics

Orbion and Xplore partner to accelerate deep space exploration

Visitors vanish from Asia's most visited sites

EARTH OBSERVATION
Aerojet Rocketdyne installs rocket motor casting bell as Camden rocket motor facility nears completion

ESA and European Commission preorder four more Ariane 6 launches

NASA's SLS moon rocket is 30 percent over budget, report says

SpaceX 'gunning' for May launch of astronauts from Florida

EARTH OBSERVATION
ExoMars to take off for the Red Planet in 2022

Organic molecules discovered by Curiosity Rover consistent with early life on Mars

Moreux Crater on Mars offers evidence of dunes and glacial processes

Virginia Middle School names NASA's next Mars rover Perseverance

EARTH OBSERVATION
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

EARTH OBSERVATION
Making aerospace workforce training a national mandate for the future

Elon Musk dismisses astronomy concerns over Starlink network

The impact of satellite constellations on astronomical observations

Blast off: space minnow Indonesia eyes celestial success

EARTH OBSERVATION
Polymer films pass electron gun test

World Centric announces new World Centric leaf fiber lids

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

EARTH OBSERVATION
Salmon parasite is world's first non-oxygen breathing animal

Observed: An exoplanet where it rains iron

Scientists have discovered the origins of the building blocks of life

ESO telescope observes exoplanet where it rains iron

EARTH OBSERVATION
Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System

TRIDENT Mission Concept Selected by NASA's Discovery Program









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.