. 24/7 Space News .
CARBON WORLDS
New research builds upon carbon nanotubes to create a novel functional structure
by Staff Writers
Tokyo, Japan (SPX) Feb 07, 2020

A visual comparison of 2D (above) and 1D (below) vdWs.

For decades, carbon nanotubes held great promise of developments in the field of electronics and more. But one drawback to realizing these innovations has been the difficulty of incorporating additional materials into nanotubes. For the first time, researchers have grown crystals of various materials uniformly onto the surface of carbon nanotubes. They hope these modified structures will exhibit functions useful in electronic, chemical or other applications.

We all know that as technology progresses, devices become ever smaller and more feature laden. Such advancements are possible due to the continued work of scientists who explore new ways of coaxing materials to perform useful functions.

One area researchers eagerly investigate is the function of flat two-dimensional (2D) crystals, each just one molecule thick. These are arranged in layers to create structures called Van der Waals heterostructures (vdWs).

"Many interesting phenomena have been seen in 2D vdWs and new kinds of electronic and optical components have been proposed as a result," said Professor Shigeo Maruyama. "However, we wondered whether it's possible to create spatially compact one-dimensional (1D) vdWs and what kinds of useful and unique properties these nanotube structures may have."

It turns out 1D vdWs are possible to fabricate, but it's far from easy. Maruyama, Associate Professor Rong Xiang and their team first created some pure carbon (C) nanotubes, which in itself is still a relatively new and difficult process. These were placed in a high-temperature atmosphere containing boron nitride (BN), which binds to the surface of the nanotube to form a uniform and continuous layer or crystal.

A similar process then adds a third layer to this tube in the form of molybdenum disulfide (MoS2). When tube structures encapsulate one another like this it's called a coaxial structure, as multiple 1D shapes share an axis of orientation.

"At that time, the yield of this structure was still extremely low. I spent one full day at the controls of a transmission electron microscope probing the sample," explained Xiang. "In the afternoon when I was almost giving up, I found one of our coaxial nanotubes. Then a few minutes later, I found a second one! With two observations, I become fully confident that MoS2 based 1D vdWs can exist."

1D vdWs are an entirely new class of material and its properties have not yet been studied. But Maruyama, Xiang and their team are hopeful that these interesting structures may find use in applications such as flexible electronics, lasers, solar energy conversion, electrocatalytic water splitting (to produce hydrogen), photoelectric devices and more.

Research paper


Related Links
University Of Tokyo
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Bending diamond at the nanoscale
Sydney, Australia (SPX) Feb 07, 2020
Diamond is prized by scientists and jewellers alike, largely for a range of extraordinary properties including exceptional hardness. Now a team of Australian scientists has discovered diamond can be bent and deformed, at the nanoscale at least. The discovery opens up a range of possibilities for the design and engineering of new nanoscale devices in sensing, defence and energy storage but also shows the challenges that lie ahead for future nanotechnologies, the researchers say. Carbon-based ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
The science behind and beyond Luca's mission

Record-Setting NASA Astronaut, Crewmates Return from Space Station

AdvancingX announces collaborative agreement with ISS National Lab

Space station to forge ultra-fast connections

CARBON WORLDS
Getting your payload to orbit

India, Russia Agree to Develop Advanced Ignition Systems to Propel Futuristic Rockets, Missiles

NASA, Europe space agency launch Solar Orbiter mission

Systima Technologies expands workforce to support hypersonic programs

CARBON WORLDS
Mars 2020 equipped with laser vision and better mics

MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

CARBON WORLDS
China's Long March-5B carrier rocket arrives at launch site

China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

CARBON WORLDS
Maxar Technologies will build Intelsat Epic geostationary communications satellite with NASA hosted payload

Australia's first space incubator seeks global applicants for 2020 program

OneWeb lifts off: Next batch ready to launch

Arianespace and Starsem launch 34 OneWeb satellites to help bridge the digital divide

CARBON WORLDS
First time controlling two spacecraft with one dish

New threads: Nanowires made of tellurium and nanotubes hold promise for wearable tech

Fastest high-precision 3D printer

AFRL, partners develop innovative tools to accelerate composites certification

CARBON WORLDS
Distant giant planets form differently than 'failed stars'

CHEOPS space telescope takes its first pictures

NASA's Webb will seek atmospheres around potentially habitable exoplanets

To make amino acids, just add electricity

CARBON WORLDS
Pluto's icy heart makes winds blow

Why Uranus and Neptune are different

Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.