24/7 Space News
New recipes for origin of life may point way to distant, inhabited planets
Life requires repetition of chemical reactions. Describing the kinds of reactions and conditions required for self-sustaining repetition - called autocatalysis - could focus the search for life on other planets.
New recipes for origin of life may point way to distant, inhabited planets
by Staff Writers
Madison WI (SPX) Sep 20, 2023

Life on a faraway planet - if it's out there - might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. A team led by scientists at the University of Wisconsin-Madison has exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life.

Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions - planetary versions of mixing techniques, oven temperatures and baking times - for the recipes to come together.

The process of progressing from basic chemical ingredients to the complex cycles of cell metabolism and reproduction that define life, the researchers say, requires not only a simple beginning but also repetition.

"The origin of life really is a something-from-nothing process," says Betul Kacar, a NASA-supported astrobiologist and UW-Madison professor of bacteriology. "But that something can't happen just once. Life comes down to chemistry and conditions that can generate a self-reproducing pattern of reactions."

Chemical reactions that produce molecules that encourage the same reaction to happen again and again are called autocatalytic reactions. In a new study published Sept. 18 in the Journal of the American Chemical Society, Zhen Peng, a postdoctoral researcher in the Kacar laboratory, and collaborators compiled 270 combinations of molecules - involving atoms from all groups and series across the periodic table - with the potential for sustained autocatalysis.

"It was thought that these sorts of reactions are very rare," says Kacar. "We are showing that it's actually far from rare. You just need to look in the right place."

The researchers focused their search on what are called comproportionation reactions. In these reactions, two compounds that include the same element with different numbers of electrons, or reactive states, combine to create a new compound in which the element is in the middle of the starting reactive states.

To be autocatalytic, the outcome of the reaction also needs to provide starting materials for the reaction to occur again, so the output becomes a new input says Zach Adam, a co-author of the study and a UW-Madison geoscientist studying the origins of life on Earth. Comproportionation reactions result in multiple copies of some of the molecules involved, providing materials for the next steps in autocatalysis.

"If those conditions are right, you can start with relatively few of those outputs," Adam says. "Every time you take a turn of the cycle you spit out at least one extra output which speeds up the reaction and makes it happen even faster."

Autocatalysis is like a growing population of rabbits. Pairs of rabbits come together, produce litters of new rabbits, and then the new rabbits grow up to pair off themselves and make even more rabbits. It doesn't take many rabbits to soon have many more rabbits.

Looking for floppy ears and fuzzy tails out in the universe, however, probably isn't a winning strategy. Instead, Kacar hopes chemists will pull ideas from the new study's recipe list and test them out in pots and pans simulating extraterrestrial kitchens.

"We will never definitively know what exactly happened on this planet to generate life. We don't have a time machine," Kacar says. "But, in a test tube, we can create multiple planetary conditions to understand how the dynamics to sustain life can evolve in the first place."

Kacar leads a NASA-supported consortium called MUSE, for Metal Utilization and Selection Across Eons. Her lab will focus on reactions including the elements molybdenum and iron, and she is excited to see what others cook up from the most exotic and unusual parts of the new recipe book.

"Carl Sagan said if you want to bake a pie from scratch, first you must create the universe," Kacar says. "I think if we want to understand the universe, first we must bake a few pies."

Research Report:Assessment of Stoichiometric Autocatalysis across Element Groups

Related Links
University of Wisconsin-Madison
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Exoplanet with a large iron core adds to puzzle of how planets form
Turin, Italy (SPX) Sep 18, 2023
Over the past decades, astronomers have found several thousand extrasolar planets. Extrasolar planets orbit stars outside our solar system. The next frontier in this research field is to learn more about their composition and internal structure, in order to develop a better understanding of how planets form. Elisa Goffo, Ph.D. student at the Physics Department of the University of Turin (Italy) and at the Thuringer Landessternwarte (Germany), together with an international research team, has made ... read more

Kayhan Space Raises $7 million, Unveils First-Ever Autonomous Space Traffic Coordination Service

Two Russians, American reach space station

Rockets and Porsches: rich Russians flock to Baikonur spaceport

Soyuz hatch opens, Expedition 69 expands to 10 crewmates

'Anomaly' ends Rocket Lab launch mid-flight

SpaceX deploys another 22 Starlink satellites

Third Subscale Booster for future Artemis missions fires up at Marshall

Mini space thruster that runs on water

New milestones despite tricky boulders

Curiosity reaches Mars ridge where water left debris pileup

Reading the Rocks: The Importance of the Margin Carbonate Unit on Mars

New Mars gravity analysis improves understanding of possible ancient ocean

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

China solicits names for manned lunar exploration vehicles

From rice to quantum gas: China's targets pioneering space research

Intelsat delivers new reliable broadcast connectivity service

Terran Orbital announces pricing of Public Offering

Terran Orbital announces Proposed Public Offering

Sidus Space secures position on upcoming Bandwagon Mission

FAA proposes rule to reduce space debris as SpaceX launches 22 satellites into orbit

China builds new radio telescope to support lunar, deep-space missions

AFRL'S newest supercomputer 'Raider' promises to compute years' worth of data in days

Skyloom and Satellogic sign agreement for Multipath Optical Comms Data Transmission

Tiny sea creatures reveal the ancient origins of neurons

Exoplanet with a large iron core adds to puzzle of how planets form

New recipes for origin of life may point way to distant, inhabited planets

On the road to spotting alien life

Webb finds carbon source on surface of Jupiter's moon Europa

Juice: why's it taking sooo long

Hidden ocean the source of CO2 on Jupiter moon

Possible existence of Earth-like planet predicted in Outskirts of Solar System

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.