24/7 Space News
TECH SPACE
New radar technique lets scientists probe invisible ice sheet region on Earth and icy worlds
The Devon Ice Cap in the Canadian Arctic. The map shows the extent of an ice layer buried among the ice cap's snow packed surface. Analysis by researchers at the University of Texas Institute for Geophysics revealed that the thickest portions of the ice layer can channel meltwater into surface rivers (blue streaks), reducing the ice cap's ability to hold water.
Reuters Events SMR and Advanced Reactor 2025
New radar technique lets scientists probe invisible ice sheet region on Earth and icy worlds
by Staff Writers
Austin TX (SPX) Jul 13, 2023

Scientists at the University of Texas Institute for Geophysics (UTIG) have developed a radar technique that lets them image hidden features within the upper few feet of ice sheets. The researchers behind the technique said that it can be used to investigate melting glaciers on Earth as well as detect potentially habitable environments on Jupiter's moon Europa.

The near-surface layers of ice sheets are difficult to study with airborne or satellite ice-penetrating radar because much of what's scientifically important happens too close to the surface to be accurately imaged. That has left scientists relying on ground instruments that give only limited coverage, or extracting ice cores - a difficult and time-consuming operation currently impossible to do on other planets.

The new radar technique combines two different radar bandwidths and looks for discrepancies as a way of boosting the resolution. Because the instruments are carried on airplanes or satellites, scientists can quickly survey vast regions of ice.

To test the new technique, the team flew radar surveys over the Devon Ice Cap in the Canadian Arctic where they mapped a slab-like layer of impermeable ice near the surface. Further analysis suggested that the ice layer is redirecting surface melt from the ice cap's snow-packed surface into water channels downhill. The research was published May, 2023, in the journal The Cryosphere.

According to Kristian Chan, a graduate student at the UT Jackson School of Geosciences who devised the technique, the study's findings about the ice slab layer could help scientists predict the future of the ice cap and its contribution to sea level rise.

"If you have only relatively thin ice layers then the firn [snow-packed surface layers] has the ability to absorb and retain surface meltwater," Chan said. "But if these impermeable slabs are widespread then the contribution of surface melt to sea level rise is enhanced."

Surface melt is normal on ice sheets during summer months. As the top of the previous winter's snow warms up, meltwater sinks in and refreezes deeper in the snow, forming thin ice layers.

Most of the ice layers on Devon Ice Cap, however, are much thicker than expected, some forming slabs as much as 16 feet thick over several miles. That makes them very effective at redirecting meltwater, which the researchers confirmed when they matched the location of the thickest ice slabs with that of meltwater rivers.

Chan said the findings demonstrate what scientists can accomplish with the new technique.

"We used an airborne radar to find ice slabs on Devon Ice Cap, but the same thing applies for detecting layers with an orbiting radar at ice-covered 'ocean' worlds like Jupiter's moon Europa," he said.

Chan is part of a UTIG group, led by Senior Research Scientist Don Blankenship, that is developing a radar instrument called REASON, which will launch aboard NASA's Europa Clipper in 2024. Along with a European Space Agency spacecraft that launched this year, scientists will soon have two ice-penetrating radar instruments investigating Jupiter's moons Europa and Ganymede. Both radar systems are compatible with Chan's technique.

With the new technique, scientists will be able to peer into the upper few feet of the icy shells where they might find frozen brine, cryovolcanic remnants or even plume fallout deposits. All are either potential habitats or clues about habitable environments in the subsurface, said coauthor Cyril Grima, a UTIG research associate who is also part of the REASON team.

"Kristian has given us the ability to see things in this hidden part just beneath the surface that is potentially accessible to future landers," Grima said. "It's really improved the reconnaissance ability of those radars."

Research Report:Spatial characterization of near-surface structure and meltwater runoff conditions across the Devon Ice Cap from dual-frequency radar reflectivity

Related Links
University of Texas at Austin
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Indonesia orders 13 long-range military radars from Thales
Paris (AFP) June 18, 2023
Indonesia has ordered 13 long-range military radars from Thales to boost airspace surveillance efforts across its immense archipelago, the French manufacturer and state-owned Indonesian defence firm PT Len Industri said Sunday. The Ground Master 400 Alpha (GM400a) radars will allow the Indonesian military to "benefit from a single air picture integrating the detection of all types of threats, from jets and missiles to hovering helicopters and unmanned air vehicles", the companies said in a joint sta ... read more

TECH SPACE
Euclid's large halo around indefinitely small point

NASA expands options for spacewalking, moonwalking suits, services

Bursting the Bubble with Inflatable Habitats

Axiom Space Awarded Contract to Pursue Spacesuit Development for International Space Station

TECH SPACE
Rocket Lab readies launch of seven satellites from New Zealand

Rocket Lab to boost Synspective's satellite constellation with more launches

China's methane-fueled rocket achieves global first with successful orbital insertion

NASA, Aerojet Rocketdyne put Gateway thruster system to the test

TECH SPACE
New study reveals evidence of diverse organic material on Mars

Earth and Moon seen from Mars

Planning Take Two: Sols 3885-3886

SHERLOC instrument offers new perspective on Jezero Crater, Mars

TECH SPACE
China Aerospace Foundation and Asia-Pacific Space Cooperation Organization Sign Cooperation MOU

Tianzhou 5 reconnects with Tiangong space station

China questions whether there is a new moon race afoot

Three Chinese astronauts return safely to Earth

TECH SPACE
Viasat provides status update on ViaSat-3 Americas Satellite

China begins construction of ultra-low orbit satellite constellation

CASIC plans new satellite network by 2030

ITU Radio Regulations Board approves waiver for Rivada LEO constellation

TECH SPACE
New radar technique lets scientists probe invisible ice sheet region on Earth and icy worlds

Uniting Europe: DLR Spearheads Responsive Satellite Deployment Network

DARPA seeks input on novel methods to separate, purify rare earth elements

iQPS initiates a full-scale study to leverage SkyCompass-1 optical data relay service

TECH SPACE
Study increases probability of finding water on other worlds by x100

'Like a mirror': Astronomers identify most reflective exoplanet

Astronomers discover elusive planet responsible for spiral arms around its star

Preventing interplanetary pollution that could pose a threat to life on Earth and other planets

TECH SPACE
First ultraviolet data collected by ESA's JUICE mission

Unveiling Jupiter's upper atmosphere

ASU study: Jupiter's moon Europa may have had a slow evolution

Juno captures lightning bolts above Jupiter's north pole

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.