. 24/7 Space News .
TIME AND SPACE
New quantum structures in super-chilled helium may mirror early days of universe
by Staff Writers
Helsinki, Finland (SPX) Jan 18, 2019

Representation of the spin vectors of the liquid helium as they form half quantum vortices.

For the first time, researchers have documented the long-predicted occurrence of 'walls bound by strings' in superfluid helium-3. The existence of such an object, originally foreseen by cosmology theorists, may help explaining how the universe cooled down after the Big Bang. With the newfound ability to recreate these structures in the lab, earth-based scientists finally have a way to study some of the possible scenarios that might have taken place in the early universe more closely.

The findings, to be published 16th January in Nature Communications, came after two successive symmetry-breaking phase transitions at Aalto University's Low Temperature Laboratory.

Helium stays a liquid at atmospheric pressure even when chilled down to absolute zero, at which all other materials freeze solid. Not only does helium remain fluid at cryogenic temperatures, but it becomes a superfluid at a sufficiently low temperature. A superfluid material has essentially zero viscosity, which means it should flow forever without losing energy.

When confined to a nano-structured volume, researchers can use superfluid phases of the isotope helium-3 to study effects like half-quantum vortices--whirlpools in the superfluid where the amount of helium flowing is strictly controlled by the rules of quantum physics.

'We initially thought that the half-quantum vortices would disappear when we lowered the temperature. It turns out that they [half-quantum vortices] actually survive as the helium-3 sample is cooled below half a millikelvin--instead a nontopological wall appears,' says Jere Makinen, lead author of the study and doctoral student at Aalto University.

While not physical walls, which would block flow, the nontopological walls alter the magnetic properties of helium. The researchers were able to detect the changes using nuclear magnetic resonance.

In the first few microseconds after the Big Bang, some cosmologists believe the entire universe experienced symmetry-breaking phase transitions, like a superfluid inside a nano-structured volume as it is chilled. The theory goes that quantum fluctuations or topological defects, like domain walls and quantum vortices, in the ultra-condensed universe were frozen in place as the universe expanded. With time these frozen fluctuations became the galaxies that we see, and live in, today. Being able to create these objects in the lab may allow us to understand more about the universe and why it formed in the way it did.

As an added bonus, the structure of these hurricane-like defects Makinen created in the laboratory also provides a potential model for the study of topological quantum computing.

'While liquid helium-3 would be too hard and expensive to maintain as a material for a working computer, it give us a working model to study phenomena that could be used in more accessible future materials,' he says.

Professor Emeritus Grigori Volovik, co-author of the new study, first predicted half-quantum vortices with V. P. Mineev in the 1970s. They were first observed in helium superfluid, in the Aalto Low Temperature Lab, in 2016.

Research paper


Related Links
Aalto University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Trillions of starts light up the dawn of the universe
Tucson AZ (SPX) Jan 17, 2019
With the help of NASA's Hubble Space Telescope, astronomers have discovered the brightest object ever seen at a time when the universe was less than one billion years old. The brilliant beacon is a quasar, the core of a galaxy with a black hole ravenously eating material surrounding it. Though the quasar is very far away - 12.8 billion light-years - astronomers can detect it because a galaxy closer to Earth acts as a lens and makes the quasar look extra bright. The gravitational field of the close ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

NASA Astronaut Hague Who Failed to Reach ISS May Make One-Year Flight

TIME AND SPACE
SLS liquid hydrogen tank test article loaded into test stand

Closing The Space Launch Information Gap

SpaceX laying off 10 percent of workforce

Mechanisms are Critical to All Space Vehicles

TIME AND SPACE
Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

TIME AND SPACE
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

TIME AND SPACE
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

Australia's 'space city' hosts rising stars from around the globe

Competition for Young Space Entrepreneurs launched

SpaceX Falcon 9 completes Iridium Next launch campaign

TIME AND SPACE
Kiel physicists discover new effect in the interaction of plasmas with solids

Nebraska leads $11 million study to develop radiation exposure drugs

Penn engineers 3D print smart objects with 'embodied logic'

Raytheon awarded $9.3M contract for Spy-1 radar work

TIME AND SPACE
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

TIME AND SPACE
Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.