. 24/7 Space News .
EARLY EARTH
New prehistoric bird species discovered
by Staff Writers
Rochester NY (SPX) Dec 22, 2016


This is an artist's rendering of Tingmiatornis arctica, the new prehistoric bird species discovered by scientists at the University of Rochester. Image courtesy Michael Osadciw/University of Rochester. For a larger version of this image please go here.

A team of geologists at the University of Rochester has discovered a new species of bird in the Canadian Arctic. At approximately 90 million years old, the bird fossils are among the oldest avian records found in the northernmost latitude, and offer further evidence of an intense warming event during the late Cretaceous period.

"The bird would have been a cross between a large seagull and a diving bird like a cormorant, but likely had teeth," says John Tarduno, professor and chair of the Department of Earth and Environmental Sciences at the University and leader of the expedition.

Tarduno and his team, which included both undergraduate and graduate students, named the bird Tingmiatornis arctica; "Tingmiat" means "those that fly" in the Inuktitut language spoken in the central and eastern Canadian Arctic (Nunavut territory).

Their findings, published in Scientific Reports, add to previous fossil records Tarduno uncovered from the same geological time period and location in previous expeditions. Taken together, these fossils paint a clearer picture of an ecosystem that would have existed in the Canadian Arctic during the Cretaceous period's Turonian age, which lasted from approximately 93.9 to 89.8 million years ago.

"These fossils allow us to flesh out the community and add to our understanding of the community's composition and how it differed from other places in the world," says Donald Brinkman, vertebrate paleontologist and director of preservation and research at the Royal Tyrrell Museum in Alberta, Canada.

Building historic climate records further helps scientists determine the effects of climate on various communities, ecosystems, and the distribution of species and could help predict the effects of future climatic events.

"Before our fossil, people were suggesting that it was warm, but you still would have had seasonal ice," Tarduno says. "We're suggesting that's not even the case, and that it's one of these hyper-warm intervals because the bird's food sources and the whole part of the ecosystem could not have survived in ice."

From the fossil and sediment records, Tarduno and his team were able to conjecture that the bird's environment in the Canadian Arctic during the Turonian age would have been characterized by volcanic activity, a calm freshwater bay, temperatures comparable to those in northern Florida today, and creatures such as turtles, large freshwater fish, and champsosaurs - now-extinct, crocodile-like reptiles.

"The fossils tell us what that world could look like, a world without ice at the arctic," says Richard Bono, a PhD candidate in earth and environmental sciences at the University and a member of Tarduno's expedition. "It would have looked very different than today where you have tundra and fewer animals."

The Tingmiatornis arctica fossils were found above basalt lava fields, created from a series of volcanic eruptions. Scientists believe volcanoes pumped carbon dioxide into the Earth's atmosphere, causing a greenhouse effect and a period of extraordinary polar heat. This created an ecosystem allowing large birds, including Tingmiatornis arctica, to thrive.

Tarduno's team unearthed three bird bones: part of the ulna and portions of the humerus, which, in birds, are located in the wings. From the bone features, as well as its thickness and proportions, the team's paleontologist, Julia Clarke of the University of Texas, was able to determine the evolutionary relationships of the new birds as well as characteristics that indicate whether it likely was able to fly or dive.

"These birds are comparatively close cousins of all living birds and they comprise some of the oldest records of fossil birds from North America," Clarke says. "Details of the upper arm bones tell us about how features of the flightstroke seen in living species came to be."

Previous fossil discoveries indicate the presence of carnivorous fish such as the 0.3-0.6 meter-long bowfin. Birds feeding on these fish would need to be larger-sized and have teeth, offering additional clues to Tingmiatornis arctica's characteristics.

Physiological factors, such as a rapid growth and maturation rate, might explain how this line of bird was able to survive the Cretaceous-Paleogene mass extinction event that occurred approximately 66 million years ago and eliminated approximately three-quarters of the plant and animal species on Earth.

These physiological characteristics are still conjecture, Tarduno emphasizes, but he says the bird's environment gives clear indications as to why the bird fossils were found in this location.

"It's there because everything is right," Tarduno says. "The food supply was there, there was a freshwater environment, and the climate became so warm that all of the background ecological factors were established to make it a great place."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Rochester
Explore The Early Earth at TerraDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Mammals packed a powerful bite during age of dinosaurs
Seattle WA (SPX) Dec 13, 2016
Move over, hyenas and saber-toothed cats; there's a mammal with an even stronger bite. A new study by Burke Museum and University of Washington paleontologists describes an early marsupial relative called Didelphodon vorax that lived alongside ferocious dinosaurs and had, pound-for-pound, the strongest bite force of any mammal ever recorded. Published in the journal Nature Communications, ... read more


EARLY EARTH
Trump sits down with tech execs, including critics

Trump sits down with tech execs, including critics

Space Network upgrade to double data rates on ISS

NASA Tech - it's all around us

EARLY EARTH
Ultra-Cold Storage - Liquid Hydrogen may be Fuel of the Future

Technical glitch postpones NASA satellite launch

After glitch, NASA satellite launch set for Wednesday

China develops non-toxic propellant for orbiting satellites

EARLY EARTH
All eyes on Trump over Mars

Opportunity performs several drives to ancient gully

Full go-ahead for building ExoMars 2020

Skimming an alien atmosphere

EARLY EARTH
Chinese missile giant seeks 20% of a satellite market

China-made satellites in high demand

Space exploration plans unveiled

China launches 4th data relay satellite

EARLY EARTH
UAE launches national space policy

Air New Zealand signs contract for Inmarsat's GX Aviation

European ministers ready ESA for a United Space in Europe in the era of Space 4.0

Nordic entrepreneurial spirit boosted by space

EARLY EARTH
Mind-controlled toys: The next generation of Christmas presents?

Ultra-high-speed optical fiber sensor enables detection of structural damage in real time

Discovery to inspire more radiation-resistant metals

Researchers discovered elusive half-quantum vortices in a superfluid

EARLY EARTH
Exciting new creatures discovered on ocean floor

New species found near ocean floor hot springs

Carbonaceous chondrites shed light on the origins of life in the universe

Atlas of the RNA universe takes shape

EARLY EARTH
Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation

New Perspective on How Pluto's "Icy Heart" Came to Be









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.