. 24/7 Space News .
CHIP TECH
New method of controlling qubits could advance quantum computers
by Staff Writers
Yokohama, Japan (SPX) Aug 03, 2022

Quantum memories made of electron or nitrogen spins in NV centers in diamond that can be individually accessed by light and precisely manipulated by microwaves.

Quantum computing, a field that relies on the principles of quantum mechanics to calculate outcomes, has the potential to perform tasks too complex for traditional computers and to do so at high speeds, making it in some ways the new frontier for science and engineering. To get to the point where quantum computers can meet their expected performance potential, the development of large-scale quantum processors and quantum memories is needed.

Precise control of qubits - or quantum bits, the basic building blocks of quantum computers - is critical to do this, but methods of controlling qubits have limitations for massive high-density wiring with high precision.

Now, researchers from Yokohama National University in Japan have found a way to precisely control qubits without the previous limitations. Their results were published in Nature Photonics on July 26, 2022.

"Microwaves are usually used for individual quantum control, but individual wiring of microwave lines is required," said paper corresponding author Hideo Kosaka, director of the Quantum Information Research Center in the Institute of Advanced Sciences and professor in the Department of Physics in the Graduate School of Engineering at Yokohama National University. "On the other hand, it is possible to manipulate qubits locally, but not precisely, with light."

Kosaka and the other researchers were able to demonstrate control of qubits by manipulating the electron spin through a combination of microwave manipulation and local optical shifting of transition frequencies of atoms and molecules, a process known as the Stark shift, using a nitrogen-vacancy center - a type of point defect - in a diamond. In other words, they were able to combine optical methods relying on light from lasers with microwaves to overcome the previous limitations.

The researchers were also able to demonstrate that this control of electron spin could in turn control the nuclear spin of the nitrogen atom at the nitrogen-vacancy center as well as the interaction between the electron and nuclear spins. This is significant because it enables precise control of qubits without the wiring issue.

"The simultaneous irradiation of light and microwaves enables individual and precise control of qubits without individual wiring," Kosaka said. "This has paved the way for large-scale quantum processors and quantum memories, which are essential for the development of large-scale quantum computers."

Additionally, the researchers were able to generate quantum entanglement - a state in which particles exist in the same state, even if they are physically separated - between the electron and nuclear spins to prepare a photon state to transfer into the nuclear spin state. This allows for interqubit connectivity with the photon, and ultimately will require less computing power and enable the transfer of information to quantum processors and quantum memories by the principle of quantum teleportation.

The new method meets all of the DiVincenzo criteria, which are the criteria needed for a quantum computer to function, and include scalability, initialization, measurement, universal gate and long coherence. It also can be applied beyond Stark shift and to other magnetic field schemes to individually manipulate qubits in those scenarios, and it can guard against common types of computing errors such as gate errors or environmental noise.

"The reason for the improved fidelity of our scheme over all-optical schemes is the use of an excess degree of freedom that is easier to control," Kosaka said, referring to the number of variables that can be controlled using this method.

According to the researchers, this advancement is a step toward quantum computing at a larger scale.

"By further improving the resolution of individual quantum operation and entanglement operation, large-scale integrated diamond quantum computers, quantum storages, and quantum sensors can be realized," Kosaka said. "It will also improve the data transmission capacity of quantum repeater network for long-haul quantum communication and distributed quantum computer network or quantum Internet."

The other authors of the paper were Yuhei Sekiguchi of the Institute of Advanced Sciences at Yokohama National University, and Kazuki Matsushita and Yoshiki Kawasaki, both from the Department of Physics in the Graduate School of Engineering at Yokohama National University.

The Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research, the Japan Science and Technology Agency CREST, JST Moonshot R and D and the Ministry of Internal Affairs and Communications under the initiative Research and Development for Construction of a Global Quantum Cryptography Network funded this research.

Research Report:Optically addressable universal holonomic quantum gates on diamond spins


Related Links
Yokohama National University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
US Senate passes bill to boost domestic chip manufacturing
Washington (AFP) July 28, 2022
The US Senate passed a bill on Wednesday to boost domestic production of semiconductors, the in-demand microchips that power everything from smartphones to cars to weapons. Global semiconductor supplies were disrupted by fallout from Covid-19 shutdowns, sparking widespread shortages of the chips - many of which are made in Asia. The legislation, which now goes back to the House of Representatives for final passage, provides $52 billion to increase domestic semiconductor production and more than ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
ISS tests organisms, materials in space

3 in Blue Origin crew set new world records aboard New Shepard spaceflight

NewSpace may eliminate sun-synchronous orbits

Blue Origin to launch space tourist flight next week

CHIP TECH
J-Space partners with Virgin Orbit to bring sovereign air-launch capability to South Korea

Private rocket company completes third orbital mission

Blue Origin sends first Egyptian and Portuguese nationals to space

Virgin Galactic secures land for new astronaut campus and training facility

CHIP TECH
New Year, New Challenges: Sols 3558-3559

Ten Earth Years Later On Mars Sols 3553-3554

Images of EDL Debris

Rocky road ahead still not the good kind: Sols 3548-3550

CHIP TECH
Reusable experimental spacecraft put into orbit

China launches six new satellites

China's Tianzhou-3 cargo craft re-enters atmosphere under control

Researchers: Chinese rocket stage to hit Earth in uncontrolled descent

CHIP TECH
Spire Global to scale up constellation for HANCOM inSPACE with second satellite

ASTRA announces major new equity facility

As reflective satellites fill the skies, UA students helping astronomers adapt

Slingshot Aerospace acquires Numerica's space division and UK-Based Seradata

CHIP TECH
Building the best zeolite

A better way to quantify radiation damage in materials

Magnetic quantum material helps probe next-gen information technologies

New quantum whirlpools with tetrahedral symmetries discovered in a superfluid

CHIP TECH
New research on the emergence of the first complex cells challenges orthodoxy

Super-earth skimming habitable zone of red dwarf

How do collisions of rocks with planets help the planets evolve?

Lava caves of Hawaii Island contain thousands of unknown bacterial species

CHIP TECH
Why Jupiter doesn't have rings like Saturn

You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.