. 24/7 Space News .
New maths accurately captures liquids and surfaces moving in synergy
by Staff Writers
Berkeley CA (SPX) Jun 14, 2016

A new mathematical framework developed at Berkeley Lab, published in Science Advances, allows researchers to capture fluid dynamics coupled to interface motion at unprecedented detail. The framework, called "interfacial gauge methods", developed by Robert Saye, a Luis W. Alvarez Fellow in the Mathematics Group at Berkeley Lab, rewrites the equations governing incompressible fluid flow in a way that is more amenable to accurate computer modeling. In this example, a jet of water impacts on a reservoir of water underneath, forming ripples just above the surface in the main jet. These ripples are caused by the surface tension of water, and relate to a type of Plateau-Rayleigh instability. The illustration is a rendering of the computed results, which reveal intricate, multi-scale dynamics taking place, both on the free surface, as well as underneath. Image courtesy Robert Saye, Lawrence Berkeley National Laboratory. Watch a video on the research here.

Gas bubbles in a glass of champagne, thin films rupturing into tiny liquid droplets, blood flowing through a pumping heart and crashing ocean waves - although seemingly unrelated, these phenomena have something in common: they can all be mathematically modeled as interface dynamics coupled to the Navier-Stokes equations, a set of equations that predict how fluids flow.

Today, these equations are used everywhere from special effects in movies to industrial research and the frontiers of engineering. However, many computational methods for solving these complex equations cannot accurately resolve the often-intricate fluid dynamics taking place next to moving boundaries and surfaces, or how these tiny structures influence the motion of the surfaces and the surrounding environment.

This is where a new mathematical framework developed by Robert Saye, Lawrence Berkeley National Laboratory's (Berkeley Lab's) 2014 Luis Alvarez Fellow in Computing Sciences, comes in. By reformulating the incompressible Navier-Stokes equations to make them more amenable to numerical computation, the new algorithms are able to capture the small-scale features near evolving interfaces with unprecedented detail, as well as the impact that these tiny structures have on dynamics far away from the interface. A paper describing his work was published in the June 10, 2016 issue of Science Advances.

"These algorithms can accurately resolve the intricate structures near the surfaces attached to the fluid motion. As a result, you can learn all sorts of interesting things about how the motion of the interface affects the global dynamics, which ultimately allows you to design better materials or optimize geometry for better efficiency," says Saye, who is also a member of the Mathematics Group at Berkeley Lab.

"For example, in a glass of champagne, the motion of the little gas bubbles depends crucially on boundary layers surrounding the bubbles. These boundary layers need to be accurately resolved, otherwise you won't see the slight zig-zag pattern that real bubbles take as they float to the top of the glass," he adds. "This particular phenomena is important in bubble aeration, a process used widely in industry to oxygenate liquids and transport materials in liquid chambers."

High-Order vs. Low-Order
By solving the Navier-Stokes equations, researchers can gain insights into how fast a fluid is moving in its environment, how much pressure it is under and what forces it exerts on its surroundings, among other things. The results can also shed light on how all of these characteristics influence each other.

But solving these complex equations can be computationally challenging. Thus, over the years, researchers have devised a wide range of methods to simplify the equations as well as their numerical solution. One such widely used simplification is to model liquids, and in some cases gases as well, as incompressible.

According to Saye, most existing methods for solving incompressible fluid flow problems coupled to moving boundaries and surfaces are "low-order" methods. Conversely, the interfacial gauge methods that Saye developed are "high-order" methods.

"High-order methods are in some sense more accurate. One interpretation is that, for fixed computing resources, a high-order method results in more digits of accuracy compared to a low-order method. On the other hand, it is often the case that you only need a handful of digits of accuracy in your simulation. In this case, a high-order method requires less computing power, sometimes significantly less," Saye explains.

In addition, low-order methods for fluid interface dynamics tend to introduce "numerical boundary layers" into the calculated results. These lead to imperfections, a bit like film grain or noise in a photograph. It means you cannot closely examine and precisely analyze the fluid dynamics right next to the interface.

"What happens at the interface, such as the film of a soap bubble or the surface of a propeller, affects the large-scale dynamical structures in the surrounding environment," says Saye. "Low-order methods work well when everything is smooth, but you need a high-order method when you have intricate dynamics, when things are moving very fast, or if there are small-scaled features in the interface."

With cheaper computational models and increased resolution capabilities, researchers can study more complex phenomena, like how to optimize the shape of a propeller blade, the formation and destruction of foams, the resolution in modeling the boundary layers in blood flow in pumping hearts and the ejection of ink droplets in consumer inkjet printers.

Because his primary interest was to achieve a high level of resolution, it never really occurred to Saye to take a low-order method and improve on it. "I wanted to make these numerical algorithms significantly more accurate" he says. "When I thought about it that way, I realized that I needed a whole new technique to solve the equations."

His solution was to apply gauge methods to solve the incompressible Navier-Stokes equations. "Gauge methods are about the freedom one has in choosing variables in the equations," says Saye. "So I essentially used these ideas to rewrite the Navier-Stokes equations in a way that is more amenable to developing very accurate simulation algorithms."

He adds that gauge methods are in some ways a generalization of "projection methods" - well known and widely successful methods in the field of computational fluid dynamics, pioneered by Berkeley Lab Mathematician Alexandre Chorin in the 1960s.

"I am very fortunate to have been supported by Berkeley Lab's Luis Alvarez Postdoctoral Fellowship," Saye adds. "It has been instrumental in allowing me the flexibility to dedicate myself to my own research endeavors."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
DOE/Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Oregon chemists build a new, stable open-shell molecule
Eugene OR (SPX) Jun 14, 2016
University of Oregon chemists have synthesized a stable and long-lasting carbon-based molecule that, they say, potentially could be applicable in solar cells and electronic devices. The molecule changes its bonding patterns to a magnetic biradical state when heated; it then returns to a fully bonded non-magnetic closed state at room temperature. That transition, they report, can be done re ... read more

US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.