Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
New material could boost batteries' power, help power plants
by Staff Writers
Clemson SC (SPX) Apr 14, 2015


File image.

You're going to have to think very small to understand something that has the potential to be very big. A team of researchers, including Kyle Brinkman of Clemson University, developed a material that acts as a superhighway for ions. The material could make batteries more powerful, change how gaseous fuel is turned into liquid fuel and help power plants burn coal and natural gas more efficiently.

The team reported its findings Friday in the journal Nature Communications. Ye Lin, Shumin Fang and Fanglin Chen, all of the University of South Carolina, collaborated with Brinkman and Dong Su, who is with the Center for Functional Nanomaterials at Brookhaven National Laboratory in Upton, New York.

To understand what they did, it helps to know how batteries and fuel cells convert chemical energy into electricity.

It goes like this: A chemical reaction splits fuel atoms into ions and electrons. The ions go through a substance called an electrolyte while electrons zip around a circuit. When the ions and electrons recombine on the other side of the electrolyte, it creates electrical power.

That's why your cell phone is able to light up or your iPod starts playing music.

Batteries and fuel cells have done some great stuff, but they are limited by how fast ions pass through the electrolyte. If you speed up the ions, you'll have a more powerful battery or fuel cell.

The challenge for engineers is finding a mix of electrolyte ingredients that allows the ions to move as quickly as possible.

Members of the research team sharpened their focus on ceria doped with with gadolinia. It's not something you buy at the local convenience store, but it's a substance well-known to materials scientists and engineers.

Seen through a highly powerful microscope, the material looks like a chessboard with many particles, or "grains," jammed together. Those grains are made of gadolinia-doped ceria, and ions zip through the grains with ease.

But there was a problem. Gadolinia tends to accumulate at the boundaries of those tiny grains, slowing down the ions.

The research team figured out that adding cobalt iron oxide to the mix cleaned out the gadolinium that had accumulated in the grain boundaries. With the new ingredient, ions had clear sailing through the electrolyte en route to their rendezvous with the electrons.

It's great for turning chemical energy into electrical power, which could result in more powerful batteries and fuel cells.

But that's not all.

Cleaning out the boundaries allowed eased movement of oxygen ions, which helps create pure oxygen. So the same material that enhances power could also be used to create membrane systems that purify gas mixtures.

It could mean that oxygen will replace steam in the process used to turn fuels into liquid, including the gasoline you put in your car. Pure oxygen is also an ideal environment for fire, so it could be used to help burn coal and natural gas.

Brinkman said he first began working on the technology when he was a post-doctoral researcher at the National Institute of Advanced Industrial Science and Technology in Japan.

He continued his work at Savannah River National Laboratory and brought it with him when he took the job at Clemson in January 2014.

Brinkman is now an associate professor in the materials science and engineering department.

"I'm proud to be a part of this collaboration," he said. "It's a great feeling to understand the principles and to know they can be applied. I think we're on the cusp of something potentially world-changing.

"The ability to control the performance of materials by tuning small interfacial regions represents a huge opportunity in the design of materials for use in energy conversion and storage."

When he first began his research, Brinkman would mix various materials together, take measurements and try to understand what happened based on equations.

But now researchers can see what is occurring at the atomic level by using Brookhaven's highly powerful electron microscopes.

Rajendra Bordia, chair of the materials science and engineering department, congratulated the team on its work.

"Nature Communications is a highly prestigious and selective journal," he said. "Having research published in it speaks to the high quality of research and scholarship involved. I applaud and congratulate Kyle and the whole team on this excellent work."

Brinkman said the material that researchers used to conduct ions typically works at temperatures near 800 degrees Celsius, so it would be too hot to stick in your pocket. The next step is to work with materials that burn at cooler temperatures, he said.

Anand Gramopadhye, dean of Clemson's College of Engineering and Science, said the work was a wonderful example of two top South Carolina universities coming together for the betterment of the whole state and nation.

"The Tigers and Gamecocks may be rivals on the football field, but we come together in the lab," he said. "We are one South Carolina working toward a more sustainable nation. I congratulate the team on its work."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Clemson University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
A common battery test often bounces off target
Princeton NJ (SPX) Apr 02, 2015
Don't throw away those bouncing batteries. Researchers at Princeton University have found that common test of bouncing a household battery is not actually an effective way to check a battery's charge. "The bounce does not tell you whether the battery is dead or not, it just tells you whether the battery is fresh," said Daniel Steingart, an assistant professor of mechanical and aerospace en ... read more


ENERGY TECH
Will the moon's first inhabitants live in giant lava tubes?

Soft Landing on the Moon an Extraordinary Challenge

Stop blaming the moon

Extent of Moon's giant volcanic eruption is revealed

ENERGY TECH
More evidence for groundwater on Mars

Scars on Mars from 2012 Rover Landing Fade - Usually

Bill Nye and others discussing taking humans to Mars by 2033

Media Spun Up on NASA Cutting-edge Mars Landing Technology

ENERGY TECH
Air Scrubber Plus Brings Space Age Technology Down To Earth

NASA Announces New Partnerships with Industry for Deep-Space Skills

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

ENERGY TECH
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

ENERGY TECH
Special 3-D delivery from space to Marshall Space Flight Center

NASA drives future discoveries with new ISS information system

Cosmonauts Take Tablet Computer Into Space

Russia announces plan to build new space station with NASA

ENERGY TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

THOR 7 encapsulation as next Ariane 5 campaigns proceeds

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

ENERGY TECH
Earthlike 'Star Wars' Tatooines may be common

Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ENERGY TECH
Physicists create new molecule with record-setting dipole moment

Largest database of elastic properties accelerates material science

Pick a color, any color

Vietnam hunts for missing box of radioactive material




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.