24/7 Space News
SPACE MEDICINE
New insights into how cells respond to altered gravity experienced in space
stock image only
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
New insights into how cells respond to altered gravity experienced in space
by Staff Writers
Washington DC (SPX) Mar 29, 2023

A new study has revealed insights into how cells sense and respond to the weightlessness experienced in space. The information could be useful for keeping astronauts healthy on future space missions.

The gravity conditions in space, known as microgravity, trigger a unique set of cellular stress responses. In the new work, researchers found that the protein modifier SUMO plays a key role in cellular adaptation to simulated microgravity.

"Under normal gravity conditions, SUMO is known to respond to stress and to play a critical role in many cellular processes, including DNA damage repair, cytoskeleton regulation, cellular division and protein turnover," said research team leader Rita Miller, a professor of biochemistry and molecular biology at Oklahoma State University in Stillwater. "This is the first time that SUMO has been shown to have a role in the cell's response to microgravity."

Jeremy Sabo, a graduate student in Miller's laboratory, will present the findings at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, March 25-28 in Seattle.

SUMO can interact with proteins via two types of chemical bonds: a covalent attachment to a target lysine or noncovalent interactions with a binding partner. The researchers looked at both types of interactions in yeast cells, a model organism commonly used to study cellular processes. They analyzed cells that had undergone six cellular divisions in either normal Earth gravity or microgravity simulated using a specialized cell culture vessel developed by NASA.

To understand which cellular processes were affected by the stress of microgravity, they began by comparing the levels of protein expression for cells that experienced each gravity condition. Then, to find out what was driving these protein changes, they looked more specifically at which of these proteins interacted with SUMO using mass spectroscopy.

In the cells experiencing microgravity, the researchers identified 37 proteins that physically interacted with SUMO and showed expression levels that differed from that of the Earth gravity cells by more than 50%. These 37 proteins included ones that are important for DNA damage repair, which is notable because radiation damage is a serious risk in space. Other proteins were involved in energy and protein production as well as maintaining cell shape, cell division and protein trafficking inside cells.

"Since SUMO can modify several transcription factors, our work may also lead to a better understanding of how it controls various signaling cascades in response to simulated microgravity," said Miller.

Next, the researchers want to determine whether the absence of the SUMO modification on specific proteins is harmful to the cell when it is subjected to simulated microgravity.

Related Links
American Society for Biochemistry and Molecular Biology
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
Tiny robot able to navigate in a physiological environment and capture damaged cells
Tel-Aviv, Israel (SPX) Mar 28, 2023
Researchers at Tel Aviv University have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms - electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis. The micro-robot can also ... read more

ADVERTISEMENT
ADVERTISEMENT
SPACE MEDICINE
NASA, Boeing aiming for July launch of Starliner space capsule

Improving the accuracy of orbit prediction and position error covariance prediction

Russia's only female cosmonaut praises ISS mission

THE NEW GUYS: The Historic Class of Astronauts that Changed the Face of Space Travel

SPACE MEDICINE
NASA rocket engines re-engineered as production restarts

Privately built, liquid-fuel rocket first in world to reach orbit in debut flight

Boeing pushes Starliner test flight to July

Japan postpones H2A rocket launch after H3 failure

SPACE MEDICINE
Ready for Software Upgrade Sols 3786-3788

MOXIE Celebrates 2 Years on Mars: Discoveries and Work Left To Do

First Mars Sample Depot shaped by Rover, Lander, and Helicopter

A Picture Perfect Day - Or To Be More Exact, a Day Perfect for Taking Pictures Sols 3783-3784

SPACE MEDICINE
China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

SPACE MEDICINE
SpaceX sends 56 Starlink satellites into low-Earth orbit

O'Shaughnessy Ventures announces investment in Atomos Space

Unseenlabs ready for Bro-9 satellite launch dedicated vessel geolocation from space

Globalstar announces $200M non-convertible financing to satisfy remaining capital needs

SPACE MEDICINE
Integral safe at last

WVU researchers explore alternative sources to help power space

LeoLabs and ClearSpace partner to advance a safer, more sustainable space environment

OpenAI's ChatGPT blocked in Italy: privacy watchdog

SPACE MEDICINE
New paper investigates exoplanet climates

Do Earth-like exoplanets have magnetic fields

JWST confirms giant planet atmospheres vary widely

Planet hunting and the origins of life

SPACE MEDICINE
Redness of Neptunian asteroids sheds light on early Solar System

Sabotaging Juice

Hubble monitors changing weather and seasons at Jupiter and Uranus

An explaination for unusual radar signatures in the outer solar system

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.