. 24/7 Space News .
TECH SPACE
New form of carbon that's hard as a rock, yet elastic, like rubber
by Staff Writers
Washington DC (SPX) Jun 16, 2017


This is a visualization of the different types of diamond-like linkages (red spheres) formed at curved surfaces or between the layers of graphene (black spheres) in this new type of compressed glassy carbon. Credit Images are provided courtesy of Timothy Strobel.

A team including several Carnegie scientists has developed a form of ultrastrong, lightweight carbon that is also elastic and electrically conductive. A material with such a unique combination of properties could serve a wide variety of applications from aerospace engineering to military armor.

Carbon is an element of seemingly infinite possibilities. This is because the configuration of its electrons allows for numerous self-bonding combinations that give rise to a range of materials with varying properties. For example, transparent, superhard diamonds, and opaque graphite, which is used for both pencils and industrial lubricant, are comprised solely of carbon.

In this international collaboration between Yanshan University and Carnegie - which included Carnegie's Zhisheng Zhao, Timothy Strobel, Yoshio Kono, Jinfu Shu, Ho-kwang "Dave" Mao, Yingwei Fei, and Guoyin Shen - scientists pressurized and heated a structurally disordered form of carbon called glassy carbon.

The glassy carbon starting material was brought to about 250,000 times normal atmospheric pressure and heated to approximately 1,800 degrees Fahrenheit to create the new strong and elastic carbon. Their findings are published by Science Advances.

Scientists had previously tried subjecting glassy carbon to high pressures at both room temperature (referred to as cold compression) and extremely high temperatures. But the so-called cold-synthesized material could not maintain its structure when brought back to ambient pressure, and under the extremely hot conditions, nanocrystalline diamonds were formed.

The newly created carbon is comprised of both graphite-like and diamond-like bonding motifs, which gives rise to the unique combination of properties. Under the high-pressure synthesis conditions, disordered layers within the glassy carbon buckle, merge, and connect in various ways. This process creates an overall structure that lacks a long-range spatial order, but has a short-range spatial organization on the nanometer scale.

"Light materials with high strength and robust elasticity like this are very desirable for applications where weight savings are of the utmost importance, even more than material cost," explained Zhisheng Zhao a former Carnegie fellow, who is now a Yanshan University professor.

"What's more, we believe that this synthesis method could be honed to create other extraordinary forms of carbon and entirely different classes of materials."

TECH SPACE
Oyster shells inspire new method to make superstrong, flexible polymers
New York NY (SPX) Jun 15, 2017
Researchers at Columbia Engineering have demonstrated for the first time a new technique that takes its inspiration from the nacre of oyster shells, a composite material that has extraordinary mechanical properties, including great strength and resilience. By changing the crystallization speed of a polymer initially well-mixed with nanoparticles, the team was able to control how the nanoparticle ... read more

Related Links
Carnegie Institution for Science
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
To Be or Not to Be: At 20 ISS Goes Strong, But for How Long

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

TECH SPACE
Proton returns to flight with US satellite after 12 month hiatus

NASA awards Universal Stage Adapter contract for SLS

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

TECH SPACE
Opportunity Surveying the spillway into Perseverance Valley

Study estimates amount of water needed to carve Martian valleys

Curiosity Peels Back Layers on Ancient Martian Lake

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

TECH SPACE
Moon or Mars - humanity's next stop

Seeds of 5,000-year-old tree bud after returning from space

Reusable craft are in CASIC's plans

China discloses Chang'e 5 lunar probe landing site

TECH SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

TECH SPACE
Oyster shells inspire new method to make superstrong, flexible polymers

New technique enables 3-D printing with paste of silicone particles in water

Liquids are capable of supporting waves with short wavelengths only

Metal-ion catalysts and hydrogen peroxide could green up plastics production

TECH SPACE
Flares May Threaten Planet Habitability Near Red Dwarfs

A planet hotter than most stars

Hubble's tale of 2 exoplanets - Nature vs nurture

Discovery reveals planet almost as hot as the Sun

TECH SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.