. 24/7 Space News .
TECH SPACE
New device uses biochemistry techniques to detect rare radioactive decays
by Staff Writers
Arlington TX (SPX) Mar 30, 2018

file illustration only

UTA researchers are leading an international team developing a new device that could enable physicists to take the next step toward a greater understanding of the neutrino, a subatomic particle that may offer an answer to the lingering mystery of the universe's matter-antimatter imbalance.

Physics tells us that matter is created side by side with antimatter. But if matter and antimatter are produced equally, then all of the matter created in the early universe should have been cancelled out by equal amounts of antimatter, eliminating existence itself instantly. And we would not exist.

To explain this asymmetry, some particle physicists claim that the tiny subatomic particle, the neutrino, and its antimatter particle, the antineutrino, are in fact the same particle. This might account for the overall excess of matter in the universe as a whole - and why we are here.

UTA researchers are now taking advantage of a biochemistry technique that uses fluorescence to detect ions to identify the product of a radioactive decay called neutrinoless double-beta decay that would demonstrate that the neutrino is its own antiparticle.

Radioactive decay is the breakdown of an atomic nucleus releasing energy and matter from the nucleus. Ordinary double-beta decay is an unusual mode of radioactivity in which a nucleus emits two electrons and two antineutrinos at the same time. However, if neutrinos and antineutrinos are identical, then the two antineutrinos can, in effect, cancel each other, resulting in a neutrinoless decay, with all of the energy given to the two electrons.

To find this neutrinoless double-beta decay, scientists are looking at a very rare event that occurs about once a year, when a xenon atom decays and converts to barium. If a neutrinoless double-beta decay has occurred, you would expect to find a barium ion in coincidence with two electrons of the right total energy. UTA researchers' proposed new detector precisely would permit identifying this single barium ion accompanying pairs of electrons created within large quantities of xenon gas.

"If we observe even one such event, it would be a profound discovery in particle physics, on par with the discovery of the Higgs boson," said Ben Jones, UTA assistant professor of physics, who is leading this research for the American branch of the Neutrino Experiment with Xenon TPC - Time Projection Chamber or NEXT program, which searches for neutrinoless double-beta decay. Other UTA researchers also collaborated on the ATLAS experiment, which led to the Nobel Prize winning discovery of the Higgs boson in 2012.

The researchers, who published their discovery Monday in Physical Review Letters, have demonstrated the effectiveness of their technique on a small scale and now plan to use the device in a large-scale detector, which they envision as a chamber containing a ton of high-pressure, purified xenon gas.

David Nygren, UTA Presidential Distinguished Professor of Physics and a member of the National Academy of Sciences, had the idea to look at fluorescence when he realized how neuroscientists use the technique to look at calcium ions that jump from neuron to neuron in the brain.

"I realized that calcium and barium are not so different, so perhaps we could use the same technique to search for neutrinoless double-beta decay," Nygren said.

Early research with UTA graduate student Austin McDonald identified a chemical compound called FLUO-3 that not only works with calcium ions but is also sensitive to barium. From there, the team devised a device that could reveal barium ions in a large volume of gaseous xenon, which was proven in the published paper.

"The beauty of this research is that it brings together physicists and chemists in generating creative new solutions to enable discoveries in fundamental physics," said UTA physics chair Alex Weiss.

"This work clearly demonstrates the ability of students and faculty at UTA to lead the way in international physics projects and represents an important example of the world-class research enabled by UTA's focus on data-driven discovery."

Research paper


Related Links
University of Texas at Arlington
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Reconsidering damage production and radiation mixing in materials
Helsinki, Finland (SPX) Mar 20, 2018
Understanding the nature of radiation damage in materials is of paramount importance for controlling the safety of nuclear reactors, using ion implantation in semiconductor technology, and designing reliable devices in space. The standard approach to estimating the radiation damage in materials analytically has been for more than 60 years a simple equation, known as "Kinchin-Pease". However, the so called "displacements-per-atom" (dpa) number obtained from this equation does not in common metals u ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Inspired by ASU NASA mission, students create space art

Airbus delivers new life support system for the ISS

60 years in orbit for 'grapefruit satellite' - the oldest human object in space

China to become top patent filer within three years: UN

TECH SPACE
Chinese scientists developing bee-inspired aerospace vehicle

3D printing rocket engines in SPAIN

Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

TECH SPACE
Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Martian oceans formed earlier but weren't as deep as previously thought, study finds

TECH SPACE
Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

TECH SPACE
Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

TECH SPACE
Pressing a button is more challenging than appears

Researchers use 3-D printing to create metallic glass alloys

New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

TECH SPACE
UK team to lead European mission to study new planets

TRAPPIST-1 planets provide clues to the nature of habitable worlds

ESA's next science mission to focus on nature of exoplanets

'Oumuamua likely came from a binary star system

TECH SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.