. 24/7 Space News .
TIME AND SPACE
New clues to why there's so little antimatter in the universe
by Jennifer Chu for MIT News
Boston MA (SPX) Jul 08, 2021

stock illustration only

Imagine a dust particle in a storm cloud, and you can get an idea of a neutron's insignificance compared to the magnitude of the molecule it inhabits.

But just as a dust mote might affect a cloud's track, a neutron can influence the energy of its molecule despite being less than one-millionth its size. And now physicists at MIT and elsewhere have successfully measured a neutron's tiny effect in a radioactive molecule.

The team has developed a new technique to produce and study short-lived radioactive molecules with neutron numbers they can precisely control. They hand-picked several isotopes of the same molecule, each with one more neutron than the next. When they measured each molecule's energy, they were able to detect small, nearly imperceptible changes of the nuclear size, due to the effect of a single neutron.

The fact that they were able to see such small nuclear effects suggests that scientists now have a chance to search such radioactive molecules for even subtler effects, caused by dark matter, for example, or by the effects of new sources of symmetry violations related to some of the current mysteries of the universe.

"If the laws of physics are symmetrical as we think they are, then the Big Bang should have created matter and antimatter in the same amount. The fact that most of what we see is matter, and there is only about one part per billon of antimatter, means there is a violation of the most fundamental symmetries of physics, in a way that we can't explain with all that we know," says Ronald Fernando Garcia Ruiz, assistant professor of physics at MIT.

"Now we have a chance to measure these symmetry violations, using these heavy radioactive molecules, which have extreme sensitivity to nuclear phenomena that we cannot see in other molecules in nature," he says. "That could provide answers to one of the main mysteries of how the universe was created."

Ruiz and his colleagues have published their results in Physical Review Letters.

A special asymmetry
Most atoms in nature host a symmetrical, spherical nucleus, with neutrons and protons evenly distributed throughout. But in certain radioactive elements like radium, atomic nuclei are weirdly pear-shaped, with an uneven distribution of neutrons and protons within. Physicists hypothesize that this shape distortion can enhance the violation of symmetries that gave origin to the matter in the universe.

"Radioactive nuclei could allow us to easily see these symmetry-violating effects," says study lead author Silviu-Marian Udrescu, a graduate student in MIT's Department of Physics. "The disadvantage is, they're very unstable and live for a very short amount of time, so we need sensitive methods to produce and detect them, fast."

Rather than attempt to pin down radioactive nuclei on their own, the team placed them in a molecule that futher amplifies the sensitivity to symmetry violations. Radioactive molecules consist of at least one radioactive atom, bound to one or more other atoms. Each atom is surrounded by a cloud of electrons that together generate an extremely high electric field in the molecule that physicists believe could amplify subtle nuclear effects, such as effects of symmetry violation.

However, aside from certain astrophysical processes, such as merging neutron stars, and stellar explosions, the radioactive molecules of interest do not exist in nature and therefore must be created artificially. Garcia Ruiz and his colleagues have been refining techniques to create radioactive molecules in the lab and precisely study their properties. Last year, they reported on a method to produce molecules of radium monofluoride, or RaF, a radioactive molecule that contains one unstable radium atom and a fluoride atom.

In their new study, the team used similar techniques to produce RaF isotopes, or versions of the radioactive molecule with varying numbers of neutrons. As they did in their previous experiment, the researchers utilized the Isotope mass Separator On-Line, or ISOLDE, facility at CERN, in Geneva, Switzerland, to produce small quantities of RaF isotopes.

The facility houses a low-energy proton beam, which the team directed toward a target - a half-dollar-sized disc of uranium-carbide, onto which they also injected a carbon fluoride gas. The ensuing chemical reactions produced a zoo of molecules, including RaF, which the team separated using a precise system of lasers, electromagnetic fields, and ion traps.

The researchers measured each molecule's mass to estimate of the number of neutrons in a molecule's radium nucleus. They then sorted the molecules by isotopes, according to their neutron numbers.

In the end, they sorted out bunches of five different isotopes of RaF, each bearing more neutrons than the next. With a separate system of lasers, the team measured the quantum levels of each molecule.

"Imagine a molecule vibrating like two balls on a spring, with a certain amount of energy," explains Udrescu, who is a graduate student of MIT's Laboratory for Nuclear Science. "If you change the number of neutrons in one of these balls, the amount of energy could change. But one neutron is 10 million times smaller than a molecule, and with our current precision we didn't expect that changing one would create an energy difference, but it did. And we were able to clearly see this effect."

Udrescu compares the sensitivity of the measurements to being able to see how Mount Everest, placed on the surface of the sun, could, however minutely, change the sun's radius. By comparison, seeing certain effects of symmetry violation would be like seeing how the width of a single human hair would alter the sun's radius.

The results demonstrate that radioactive molecules such as RaF are ultrasensitive to nuclear effects and that their sensitivity may likely reveal more subtle, never-before-seen effects, such as tiny symmetry-violating nuclear properties, that could help to explain the universe's matter-antimmater asymmetry.

"These very heavy radioactive molecules are special and have sensitivity to nuclear phenomena that we cannot see in other molecules in nature," Udrescu says. "This shows that, when we start to search for symmetry-violating effects, we have a high chance of seeing them in these molecules."

This research was supported, in part, by the Office of Nuclear Physics, U.S. Department of Energy; the MISTI Global Seed Funds; the European Research Council; the Belgian FWO Vlaanderen and BriX IAP Research Program; the German Research Foundation; the UK Science and Technology Facilities Council, and the Ernest Rutherford Fellowship Grant.

Research Report: Isotope Shifts of Radium Monofluoride Molecules


Related Links
MIT Laboratory for Nuclear Science
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
There may not be a conflict after all in expanding universe debate
Chicago IL (SPX) Jul 01, 2021
Our universe is expanding, but our two main ways to measure how fast this expansion is happening have resulted in different answers. For the past decade, astrophysicists have been gradually dividing into two camps: one that believes that the difference is significant, and another that thinks it could be due to errors in measurement. If it turns out that errors are causing the mismatch, that would confirm our basic model of how the universe works. The other possibility presents a thread that, when ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Why China is hobbling its tech sector

'Experience of a lifetime': Billionaire Branson achieves space dream

Space, the final frontier for billionaire Richard Branson

NASA moves ahead with plan to support private space stations

TIME AND SPACE
Skyroot Aerospace completes Series A funding

Second iteration of successful Vanguard Incubation Process approaches Summit

China launches five new satellites

Virgin Orbit launches 7 small satellites from jumbojet

TIME AND SPACE
Meet the open-source software powering NASA's Ingenuity Mars Helicopter

Flight 9 was a nail-biter, but Ingenuity came through with flying colors

Curiosity rover finds patches of rock record erased, revealing clues

Ingenuity Mars helicopter photos show latest flight area

TIME AND SPACE
Exercise bike in space helps keep crew fit

Homemade spacesuits ensure safety of Chinese astronauts in space

Mechanical arm is Chinese astronauts' space helper

Tiangong: astronauts are working on China's new space station - here's what to expect

TIME AND SPACE
Space, the final frontier for billionaire Richard Branson

Department of Space's commercial arm NewSpace India can also lease ISRO assets

OneWeb and BT to explore rural connectivity solutions for UK

Russian rocket launches UK telecom satellites

TIME AND SPACE
Energy production at Mutriku remains constant even if the wave force increases

Developing cohesive, domestic rare earth element technologies

A touch of sun heats up material scieces at ESTEC

Marine Corps corporal gets 3D-printed teeth with jaw reconstruction

TIME AND SPACE
Goldilocks planets 'with a tilt' may develop more complex life

Ancient diamonds show Earth was primed for life's explosion at least 2.7 billion years ago

Are we missing other Earths

Unique exoplanet photobombs Cheops study of nearby star system

TIME AND SPACE
Scientists solve 40-year mystery over Jupiter's X-ray aurora

Giant comet found in outer solar system by Dark Energy Survey

Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.