. 24/7 Space News .
EXO WORLDS
Ancient diamonds show Earth was primed for life's explosion at least 2.7 billion years ago
by Staff Writers
Washington DC (SPX) Jul 07, 2021

One of the 2.7 billion year-old diamonds used in this work.

A unique study of ancient diamonds has shown that the basic chemical composition of the Earth's atmosphere which makes it suitable for life's explosion of diversity was laid down at least 2.7 billion years ago. Volatile gases conserved in diamonds found in ancient rocks were present in similar proportions to those found in today's mantle, which in turn indicates that there has been no fundamental change in the proportions of volatiles in the atmosphere over the last few billion years. This shows that one of the basic conditions necessary to support life, the presence of life-giving elements in sufficient quantity, appeared soon after Earth formed, and has remained fairly constant ever since.

Presenting the work at the Goldschmidt Geochemistry conference, lead researcher Dr Michael Broadly said, "The proportion and make-up of volatiles in the atmosphere reflects that found in the mantle, and we have no evidence of a significant change since these diamonds were formed 2.7 billion years ago".

Volatiles, such as hydrogen, nitrogen, neon, and carbon-bearing species are light chemical elements and compounds, which can be readily vaporised due to heat, or pressure changes. They are necessary for life, especially carbon and nitrogen. Not all planets are rich in volatiles; Earth is volatile rich, as is Venus, but Mars and the Moon lost most of their volatiles into space. Generally, a planet rich in volatiles has a better chance of sustaining life, which is why much of the search for life on planets surrounding distant stars (exoplanets) has focused on looking for volatiles.

On Earth, volatile substances mostly bubble up from the inside of the planet, and are brought to the surface through such things as volcanic eruptions. Knowing when the volatiles arrived in the Earth's atmosphere is key to understanding when the conditions on Earth were suitable for the origin and development of life, but until now there has been no way of understanding these conditions in the deep past.

Now French and Canadian researchers have used ancient diamonds as a time capsule, to examine the conditions deep inside the Earth's mantle in the distant past. Studies of the gases trapped in these diamonds show that the volatile composition of the mantle has changed little over the last 2.7 billion years.

Lead researcher, Michael Broadley (University of Lorraine, France) said "Studying the composition of the Earth's modern mantle is relatively simple. On average the mantle layer begins around 30km below the Earth's surface, and so we can collect samples thrown up by volcanoes and study the fluids and gases trapped inside. However, the constant churning of the Earth's crust via plate tectonics means that older samples have mostly been destroyed. Diamonds however, are comparatively indestructible, they're ideal time capsules".

We managed to study diamonds trapped in 2.7 billion year old highly preserved rock from Wawa, on Lake Superior in Canada. This means that the diamonds are at least as old as the rocks they are found in - probably older. It's difficult to date diamonds, so this gave us a lucky opportunity to be sure of the minimum age. These diamonds are incredibly rare, and are not like the beautiful gems we think of when we think of diamonds. We heated them to over 2000 C to transform them into graphite, which then released tiny quantities of gas for measurement".

The team measured the isotopes of Helium, Neon, and Argon, and found that they were present in similar proportions to those found in the upper mantle today. This means that there has probably been little change in the proportion of volatiles generally, and that the distribution of essential volatile elements between the mantle and the atmosphere are likely to have remained fairly stable throughout the majority of Earth's life. The mantle is the part between the Earth's crust and the core, it comprises around 84% of the Earth's volume.

Dr Broadley continued "This was a surprising result. It means the volatile-rich environment we see around us today is not a recent development, so providing the right conditions for life to develop. Our work shows that these conditions were present at least 2.7 billion years ago, but the diamonds we use may be much older, so it's likely that these conditions were set well before our 2.7 billion year threshold".

Commenting, Dr Suzette Timmerman (University of Alberta, Canada) said: "Diamonds are unique samples, as they lock in compositions during their formation. The Wawa fibrous diamonds specifically were a great selection to study - being more than 2.7 billion years old - and they provide important clues into the volatile composition in this period, the Neoarchean period. It is interesting that the upper mantle already appears degassed more than 2.7 billion years ago. This work is an important step towards understanding the mantle (and atmosphere) in the first half of Earth's history and leads the way to further questions and research".

Dr Timmerman was not involved in this work, this is an independent comment.

The Goldschmidt Conference is the World's main geochemistry conference. It is hosted alternately by the European Association of Geochemistry (Europe) and the Geochemical Society (USA). The 2021 conference (virtual) takes place from 4-9 July, https://2021.goldschmidt.info/. The 2022 conference takes place in Hawaii.


Related Links
Goldschmidt Conference
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Life in these star-systems could have spotted Earth
Ithaca NY (SPX) Jun 24, 2021
Scientists at Cornell University and the American Museum of Natural History have identified 2,034 nearby star-systems - within the small cosmic distance of 326 light-years - that could find Earth merely by watching our pale blue dot cross our sun. That's 1,715 star-systems that could have spotted Earth since human civilization blossomed about 5,000 years ago, and 319 more star-systems that will be added over the next 5,000 years. Exoplanets around these nearby stars have a cosmic front-row s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Why China is hobbling its tech sector

Virgin Galactic spaceship carrying Branson touches down

17 years after founding Virgin Galactic, Branson bound for space

British billionaire Branson takes off for space

EXO WORLDS
Second iteration of successful Vanguard Incubation Process approaches Summit

China launches five new satellites

Virgin Orbit launches 7 small satellites from jumbojet

SpaceX launches 88 satellites on rideshare mission

EXO WORLDS
Mars helicopter begins to scout for Perseverance rover with longest flight

Meet the open-source software powering NASA's Ingenuity Mars Helicopter

Flight 9 was a nail-biter, but Ingenuity came through with flying colors

Landing on Mars is one step closer for British-built rover

EXO WORLDS
Astronauts complete first spacewalk at China's new Tiangong station

China is using mythology and sci-fi to sell its space program to the world

China building new space environment monitoring station

How does China's urine recycling system work in space

EXO WORLDS
OneWeb and BT to explore rural connectivity solutions for UK

Russian rocket launches UK telecom satellites

New funding from UK Space Agency will kickstart space technology projects

OneWeb fully-funded with new $500m investment

EXO WORLDS
Tencent to use facial ID to snag China's late-night child gamers

Energy production at Mutriku remains constant even if the wave force increases

Defense Dept. cancels $10 billion JEDI cloud contract given to Microsoft

A touch of sun heats up material scieces at ESTEC

EXO WORLDS
Ancient diamonds show Earth was primed for life's explosion at least 2.7 billion years ago

Are we missing other Earths

Unique exoplanet photobombs Cheops study of nearby star system

Collection of starshade research helps advance exoplanet imaging by space telescopes

EXO WORLDS
Giant comet found in outer solar system by Dark Energy Survey

Next stop Jupiter as country's interplanetary ambitions grow

First images of Ganymede as Juno sailed by

Leiden astronomers calculate genesis of Oort cloud in chronologically order









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.