. 24/7 Space News .
New approaches to the mystery of why ice is slippery
by Staff Writers
Madrid, Spain (SPX) Dec 13, 2022

stock illustration only

The surface of the ice melts in contact with a solid, forming a lubricant layer which is self-perpetuating, as greater weight and slippage are applied to it. This cooperative phenomenon makes the ice more slippery and more likely to cause skating or car accidents, according to international research led by the Complutense University of Madrid (UCM).

In this study, published in Proceedings of the National Academy of Science, the researchers conducted a computer simulation of how a solid slides over the surface of the ice at the atomic scale.

"Our analysis of how the ice molecules are collectively organised to give them their peculiar lubricant power offers us a privileged insight into the process that could not be achieved through conventional experiments, given the huge difficulty in conducting an experimental observation of a lubricating layer of a thickness of a billionth of a metre", stresses Luis Gonzalez MacDowell, a researcher at the UCM Physical Chemistry Department.

The slippery properties of ice have in some cases been exploited for leisure purposes (such as in ice-skating), and in others as a means of transport.

"It is important to understand the origin of this widely known property of ice, both in order to improve the performance of Olympic athletes, and to ensure vehicle safety during the winter," the expert indicates.

Aside from the UCM, the study also involves the Autonomous University of Madrid (UAM) and Marie Curie-Sklodowska University (MCSU) of Lublin, Poland.

Compatible hypotheses which pave the way for energy savings
Scientists have spent two centuries wondering why ice is slippery, and what causes the liquid layer which forms on top of it. Over the decades, figures including Michael Faraday, James Thomson, Osborne Reynolds and Philip Browden have come up with divergent hypotheses.

However, this study has served to demonstrate that they are in truth compatible, and operate simultaneously. "What we in fact find is that the key principles of the slippery nature of ice are the surface melting phenomenon proposed by Faraday; the gradual melting caused by pressure, reminiscent of Thomson's hypothesis, and the melting caused by friction, as proposed by Bowden", the UCM chemist points out.

This combination of factors gives the surface of the ice an exceptional self-repairing lubrication layer. "The problem with lubrication is that as the pressure increases, the lubricant is expelled from between the opposing faces, which leaves them in direct contact. In the case of ice, Le Chatelier's principle operates, and as the lubricating layer is driven away by the pressure, the ice itself melts and repairs the loss," indicates Lukasz Baran, the MCSU researcher who worked on the simulation technique during a six-month placement at the UCM.

Aside from preventing sporting and traffic accidents, the results of this study could be applied in designing better lubricants in other systems.

"It is important to remember that more than half the energy generated worldwide is lost through friction. Improved lubrication processes would mean a huge saving in fuel, money and environmental impact," concludes Pablo Llombart, researcher at the UAM's Nicolas Cabrera Institute.

Research Report:Ice friction at the nanoscale

Related Links
Complutense University of Madrid
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

AFRL teams with industry to expand alternative natural rubber supply
Wright-Patterson AFB OH (SPX) Dec 02, 2022
The Air Force Research Laboratory, or AFRL, launched a multimillion-dollar, multiyear program with BioMADE, Farmed Materials and The Goodyear Tire and Rubber Company in 2022 to develop a domestic source of natural rubber from a specific species of dandelion. Natural rubber is a crucial element in the Department of the Air Force's production of aircraft tires. The Materials and Manufacturing Directorate's Manufacturing and Industrial Technologies Division paired up with BioMADE, Farmed Materials an ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Turning science fiction into science fact

Practice makes perfect for student inventions at JPL competition

NASA taps Collins Aerospace to develop new spacesuits for Space Station

These freeze-drying algae can awaken from cryostasis, could help spaceflights go farther

US conducts successful hypersonic missile test: Air Force

China launches Long March 2D carrier rocket

PSLV-XL rocket motor made by industry passes test: ISRO

Arctic Sweden in race for Europe's satellite launches

Evaluating a Possible Drill Location

Sol 3676 Another: 'Bore-ing' Day on Mars

Martian dust devil analogues in the Mojave Desert #ASA183

Tiny underwater sand dunes may shed light on larger terrestrial and Martian formations

China's space station Tiangong enters new phase of application, development

China's Shenzhou-14 astronauts return safely, accomplishing many "firsts"

China's deep space exploration laboratory eyes top talents worldwide

China astronauts return from Tiangong space station

SpaceX launches 40 Internet satellites for rival OneWeb into orbit

US grants OQ more patents for world's first 5G IoT satellite LEO constellation

Spirent brings realistic testing to emerging LEO satellite applications

Slingshot Aerospace raises $40M in oversubscribed Series A2 funding round

Say hello to the toughest material on Earth

Cubic silicon carbide wafers demonstrate high thermal conductivity, second only to diamond

Scientist mimic nature to make nano particle metallic snowflakes

New approaches to the mystery of why ice is slippery

How the 'hell planet' got so hot

Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.