. | . |
New access to the interior of electronic components by Staff Writers Bochum, Germany (SPX) Nov 30, 2015
An interdisciplinary team at the Ruhr-Universitat Bochum has found a way of accessing the interior of transistors. The researchers have manipulated the electron gas contained within by applying resonators to generate rhythmic oscillation in the terahertz range inside. They shared their findings in the journal Scientific Reports. Used for switching and amplifying, transistors are fundamental elements of modern electronics. By applying a specific voltage externally to a transistor, an electric current is controlled inside, which, in turn, generates a new voltage. Compared with the externally applied voltage, the new voltage may be amplified, may oscillate or be logically connected to it. In order to interact with their surroundings via electric current and voltage, transistors contain ultra-thin electron layers, so-called 2D electron gases. The RUB team demonstrated that these gases can be controlled not only via DC and radio-frequency voltages. "A 2D electron gas is like jelly," explains Prof Dr Andreas Wieck from the Chair for Applied Solid State Physics. "If pressure is electrically applied to the gas from above with a characteristic frequency, thickness and density oscillations are generated." Accordingly, the gas can be manipulated via electric forces, which oscillates much more rapidly than any radio or microwave frequency. As it has a thickness of just about ten nanometres, the oscillations follow the laws of quantum mechanics. This means: all occurring oscillations have a specific frequency, namely in the terahertz range, i.e. in the range of 1012 Hertz. "Pressure to the electron gas must be applied in that rapid change," elaborates Wieck. Andreas Wieck, Dr Shovon Pal, Dr Nathan Jukam and other colleagues from the workgroup Terahertz Spectroscopy and Technology as well as from the Chair of Electronic Materials and Nanoelectronics have found a way to trigger the required oscillations. Thus, a new method of accessing the interior of a transistor has been created. One hundred nanometres above the electron gas, the RUB researchers evaporated an array of identical metallic resonators which can oscillate with the required fixed frequency. The electron gas was embedded in a semiconductor and could be modified via external DC voltage, namely it could be made a bit thicker or thinner. The thickness determines the frequency which makes the gas oscillate optimally. Deploying external voltage, the researchers were able to fine-tune the electron gas to the resonators, i.e. adjust the gas so that the alternating electric pressure of the resonators excites it optimally to oscillate in the terahertz range. This method could be of interest for sensors in chemical and environmental applications, as the researchers suggest. This is because molecule oscillations typically happen in the terahertz range. With modified transistors, such oscillations can be recorded and sensors can be developed that react to the frequencies of certain gases or liquids. Pal et al. (2015): Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure, Scientific Reports, DOI: 10.1038/srep16812
Related Links Ruhr-University Bochum Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |