. 24/7 Space News .
CHIP TECH
Semiconductor wafers exhibit strange quantum phenomenon at room temps
by Staff Writers
Chicago IL (SPX) Nov 26, 2015


Paul Klimov, a graduate student in the University of Chicago's Institute for Molecular Engineering, adjusts the intensity of a laser beam during an experiment. Because the laser light lies within the infrared spectrum, it is invisible to the human eye. Image courtesy University of Chicago. For a larger version of this image please go here.

Entanglement is one of the strangest phenomena predicted by quantum mechanics, the theory that underlies most of modern physics. It says that two particles can be so inextricably connected that the state of one particle can instantly influence the state of the other, no matter how far apart they are.

Just one century ago, entanglement was at the center of intense theoretical debate, leaving scientists like Albert Einstein baffled. Today, however, entanglement is accepted as a fact of nature and is actively being explored as a resource for future technologies including quantum computers, quantum communication networks, and high-precision quantum sensors.

Entanglement is also one of nature's most elusive phenomena. Producing entanglement between particles requires that they start out in a highly ordered state, which is disfavored by thermodynamics, the process that governs the interactions between heat and other forms of energy. This poses a particularly formidable challenge when trying to realize entanglement at the macroscopic scale, among huge numbers of particles.

"The macroscopic world that we are used to seems very tidy, but it is completely disordered at the atomic scale. The laws of thermodynamics generally prevent us from observing quantum phenomena in macroscopic objects," said Paul Klimov, a graduate student in the University of Chicago's Institute for Molecular Engineering and lead author of new research on quantum entanglement. The institute is a partnership between UChicago and Argonne National Laboratory.

Previously, scientists have overcome the thermodynamic barrier and achieved macroscopic entanglement in solids and liquids by going to ultra-low temperatures (-270 degrees Celsius) and applying huge magnetic fields (1,000 times larger than that of a typical refrigerator magnet) or using chemical reactions.

In the Nov. 20 issue of Science Advances, Klimov and other researchers in David Awschalom's group at the Institute for Molecular Engineering have demonstrated that macroscopic entanglement can be generated at room temperature and in a small magnetic field.

The researchers used infrared laser light to order (preferentially align) the magnetic states of thousands of electrons and nuclei and then electromagnetic pulses, similar to those used for conventional magnetic resonance imaging (MRI), to entangle them. This procedure caused pairs of electrons and nuclei in a macroscopic 40 micrometer-cubed volume (the volume of a red blood cell) of the semiconductor SiC to become entangled.

"We know that the spin states of atomic nuclei associated with semiconductor defects have excellent quantum properties at room temperature," said Awschalom, Liew Family Professor in Molecular Engineering and a senior scientist at Argonne National Laboratory. "They are coherent, long-lived and controllable with photonics and electronics. Given these quantum 'pieces,' creating entangled quantum states seemed like an attainable goal."

In addition to being of fundamental physical interest, "the ability to produce robust entangled states in an electronic-grade semiconductor at ambient conditions has important implications on future quantum devices," Awschalom said.

In the short-term, the techniques used here in combination with sophisticated devices enabled by advanced SiC device-fabrication protocols could enable quantum sensors that use entanglement as a resource for beating the sensitivity limit of traditional (non-quantum) sensors. Given that the entanglement works at ambient conditions and the fact that SiC is bio-friendly, one particularly exciting application is biological sensing inside a living organism.

"We are excited about entanglement-enhanced magnetic resonance imaging probes, which could have important biomedical applications," said Abram Falk of IBM's Thomas J. Watson Research Center and a co-author of the research findings.

In the long term, it might even be possible to go from entangled states on the same SiC chip to entangled states across distant SiC chips. Such efforts could be facilitated by physical phenomena that allow macroscopic quantum states, as opposed to single quantum states (in single atoms), to interact very strongly with one another, which is important for producing entanglement with a high success rate.

Such long-distance entangled states have been proposed for synchronizing global positioning satellites and for communicating information in a manner that is fundamentally secured from eavesdroppers by the laws of physics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Stacking instead of mixing cools down the chips
Julich, Germany (SPX) Nov 27, 2015
The overheating of computer chips is a major obstacle to the development of faster and more efficient computers and mobile phones. One promising remedy for this problem could be a class of materials first discovered just a few years ago: topological insulators, which conduct electricity with less resistance and heat generation than conventional materials. Research on these materials is still in ... read more


CHIP TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

CHIP TECH
ExoMars prepares to leave Europe for launch site

ExoMars has historical, practical significance for Russia, Europe

Tracking down the 'missing' carbon from the Martian atmosphere

Mars to lose its largest moon, Phobos, but gain a ring

CHIP TECH
Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

The Ins and Outs of NASA's First Launch of SLS and Orion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

XCOR develops Lynx Simulator

CHIP TECH
China launches Yaogan-29 remote sensing satellite

China's indigenous SatNav performing well after tests

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

CHIP TECH
Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

CHIP TECH
Vega receives the LISA Pathfinder payload for its December 2 flight

Atlas V booster lands at Vandenberg

Flight teams prepare for LISA Pathfinder liftoff

NASA Orders SpaceX Crew Mission to International Space Station

CHIP TECH
Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

Neptune-size exoplanet around a red dwarf star

Forming planet observed for first time

CHIP TECH
Satellite Spectrum Is Central To Future Vision For Global Connectivity

Hardened steels for more efficient engines

'Shrinking bull's-eye' data algorithm crunches days into hours

Ultrastable materials investigated in depth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.