24/7 Space News
SATURN DAILY
New Simulations Shed Light on Origins of Saturn's Rings and Icy Moons
Still image from a computer simulation of an impact between two icy moons in orbit around Saturn. The collision ejects debris that could evolve into the planet's iconic and remarkably young rings. The simulation used over 30 million particles, colored by their ice or rock material, run using the open source SWIFT simulation code. Credits: NASA/Durham University/Glasgow University/Jacob Kegerreis/Luis Teodoro.
ADVERTISEMENT
     
New Simulations Shed Light on Origins of Saturn's Rings and Icy Moons
by Frank Tavares for ARC News
Moffett Field CA (SPX) Sep 28, 2023

On a clear night, with a decent amateur telescope, Saturn and its series of remarkable rings can be seen from Earth's surface. But how did those rings come to be? And what can they tell us about Saturn and its moons, one of the potential locations NASA hopes to search for life? A new series of supercomputer simulations has offered an answer to the mystery of the rings' origins - one that involves a massive collision, back when dinosaurs still roamed the Earth.

According to new research by NASA and its partners, Saturn's rings could have evolved from the debris of two icy moons that collided and shattered a few hundred million years ago. Debris that didn't end up in the rings could also have contributed to the formation of some of Saturn's present-day moons.

"There's so much we still don't know about the Saturn system, including its moons that host environments that might be suitable for life," said Jacob Kegerreis, a research scientist at NASA's Ames Research Center in California's Silicon Valley. "So, it's exciting to use big simulations like these to explore in detail how they could have evolved."

NASA's Cassini mission helped scientists understand just how young - astronomically speaking - Saturn's rings and probably some of its moons are. And that knowledge opened up new questions about how they formed.

To learn more, the research team turned to the Durham University location of the Distributed Research using Advanced Computing (DiRAC) supercomputing facility in the United Kingdom. They modeled what different collisions between precursor moons might have looked like. These simulations were conducted at a resolution more than 100 times higher than previous such studies, using the open-source simulation code, SWIFT, and giving scientists their best insights into the Saturn system's history.

Saturn's rings today live close to the planet, within what's known as the Roche limit - the farthest orbit where a planet's gravitational force is powerful enough to disintegrate larger bodies of rock or ice that get any closer. Material orbiting farther out could clump together to form moons.

By simulating almost 200 different versions of the impact, the team discovered that a wide range of collision scenarios could scatter the right amount of ice into Saturn's Roche limit, where it could settle into rings.

And, while alternative explanations haven't been able to show why there would be almost no rock in Saturn's rings - they are made almost entirely of chunks of ice - this type of collision could explain that.

"This scenario naturally leads to ice-rich rings," said Vincent Eke, Associate Professor in the Department of Physics/Institute for Computational Cosmology, at Durham University and a co-author on the paper. "When the icy progenitor moons smash into one another, the rock in the cores of the colliding bodies is dispersed less widely than the overlying ice."

Ice and rocky debris would also have hit other moons in the system, potentially causing a cascade of collisions. Such a multiplying effect could have disrupted any other precursor moons outside the rings, out of which today's moons could have formed.

But what could have set these events in motion, in the first place? Two of Saturn's former moons could have been pushed into a collision by the usually small effects of the Sun's gravity "adding up" to destabilize their orbits around the planet. In the right configuration of orbits, the extra pull from the Sun can have a snowballing effect - a "resonance" - that elongates and tilts the moons' usually circular and flat orbits until their paths cross, resulting in a high-speed impact.

Saturn's moon Rhea today orbits just beyond where a moon would encounter this resonance. Like the Earth's Moon, Saturn's satellites migrate outward from the planet over time. So, if Rhea were ancient, it would have crossed the resonance in the recent past. However, Rhea's orbit is very circular and flat. This suggests that it did not experience the destabilizing effects of the resonance and, instead, formed more recently.

The new research aligns with evidence that Saturn's rings formed recently, but there are still big open questions. If at least some of the icy moons of Saturn are also young, then what could that mean for the potential for life in the oceans under the surface of worlds like Enceladus? Can we unravel the full story from the planet's original system, before the impact, through to the present day? Future research building on this work will help us learn more about this fascinating planet and the icy worlds that orbit it.

Research Report:A Recent Impact Origin of Saturn's Rings and Mid-sized Moons

Related Links
Saturn at NASA
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SATURN DAILY
Studying rivers from worlds away
Boston MA (SPX) Jul 11, 2023
Rivers have flowed on two other worlds in the solar system besides Earth: Mars, where dry tracks and craters are all that's left of ancient rivers and lakes, and Titan, Saturn's largest moon, where rivers of liquid methane still flow today. A new technique developed by MIT geologists allows scientists to see how intensely rivers used to flow on Mars, and how they currently flow on Titan. The method uses satellite observations to estimate the rate at which rivers move fluid and sediment downstream. ... read more

ADVERTISEMENT
ADVERTISEMENT
SATURN DAILY
Law professor calls for ethical approach to human experiments in space

Ethics rules needed for human research on commercial spaceflights, panel says

Ethical guidelines needed before human research in commercial spaceflight is ready for liftoff

Global team recommends ethical rules for human research in commercial spaceflight

SATURN DAILY
Vega-C Zefiro40 Test: Independent Enquiry

Record-breaking launch of SpaceX's Starlink satellites

Maritime Launch unveils commercial suborbital program at Spaceport Nova Scotia

Blue Origin to remain grounded for now following crash probe

SATURN DAILY
Light rocks on deck, gray rocks in the hole: Sols 3966-3697

Dust removal delayed: Sols 3962-3963

Double DRT for a Soliday: Sols 3964-3965:

NASA's Perseverance captures dust-filled Martian whirlwind

SATURN DAILY
Astronauts honored for contributions to China's space program

China capable of protecting astronauts from effects of space weightlessness

Tianzhou 5 spacecraft burns up on Earth reentry

Crew of Shenzhou XV mission honored for six-month space odyssey

SATURN DAILY
Momentus announces $4M direct offering priced at-the-market under Nasdaq rules

Sierra Space increases total investment to $1.7B with $290M Series B Funding

Arlington Capital Partners to acquire Exostar from Thoma Bravo

Intelsat expands Brazil infrastructure, delivers new services

SATURN DAILY
US slaps Satellite TV provider with first-ever space debris fine

German tech factory reveals antenna prototype-ngVLA will open a new window into the Universe

Data storage of tomorrow

US TV provider given first-ever space debris fine

SATURN DAILY
A newly identified virus emerges from the deep

James Webb telescope captures planet-like structures in Orion Nebula

Scientists develop method of identifying life on other worlds

Study sheds new light on strange lava worlds

SATURN DAILY
Plot thickens in the hunt for a ninth planet

Large mound structures on Kuiper belt object Arrokoth may have common origin

Webb finds carbon source on surface of Jupiter's moon Europa

Hidden ocean the source of CO2 on Jupiter moon

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.