. | . |
Nature provides a key to repelling liquids by Staff Writers Thuwal, Saudi Arabia (SPX) Aug 07, 2017
Inspired by nature, an inexpensive green technique that enables common materials to repel liquid has been developed by KAUST scientists and could lead to diverse applications from underwater drag reduction to antifouling. Making surfaces liquid repellent, referred to as omniphobicity, is used in a range of industrial processes from reducing biofouling and underwater drag to membrane distillation, waterproofing and oil-water separation. Producing such a veneer generally relies on applying perfluorinated coatings; however, these degrade under harsh physical and chemical environments, increasing costs and both health and environmental impacts and limiting their use. Rendering conventional materials, such as plastics and metals, omniphobic has been a tantalizing goal for some time; this challenge led Himanshu Mishra and colleagues from the KAUST Water Desalination and Reuse Center to seek inspiration from nature. The researchers first tested microtextures comprising doubly reentrant pillars: they were inspired by a US-based research team who, in 2014, demonstrated these pillars exhibited unprecedented omniphobicity in air, even when the materials were intrinsically wetting. "At first, these results seemed to defy conventional wisdom as roughening intrinsically wetting surfaces makes them even more wetting," said Mishra. "So we decided to investigate these microtextures for ourselves." The team confirmed that intrinsically wetting surfaces with doubly reentrant micropillars do indeed exhibit omniphobicity in air, but they also found that it was catastrophically lost in the presence of localized physical defects or damage or upon immersion in wetting liquids. "These were serious limitations because real surfaces get damaged during use," said Mishra. "This inspired us to look to nature and investigate the skins of springtails." Patterns on the skin of springtails--tiny soil-dwelling insects that live in moist conditions--exploit surface textures that contain doubly reentrant cavities, keeping them dry. By using photolithography and dry-etching tools at the KAUST Nanofabrication Core Lab, the researchers recreated these doubly reentrant microcavities on silica surfaces. Taking advantage of the doubly reentrant features showed that the microcavities trapped air and prevented penetration of liquids, even under elevated pressures. In addition, their compartmentalized nature prevented any loss of omniphobicity in the presence of localized damage or defects or upon immersion in wetting liquids. "Having demonstrated the proof of concept, we now plan to translate the fabrication process from the lab to the Workshop Core Lab in KAUST to create doubly reentrant cavities on common materials, such as polyethylene terephthalate and low-carbon steels," said Mishra. "This may help to unlock their potential for applications to reduce hydrodynamic drag and antifouling."
Tokyo, Japan (SPX) Aug 07, 2017 The principal component of petroleum and natural gas are hydrocarbons and their mixtures, and are indispensable as resources supporting modern infrastructure as raw materials for the petrochemical industry. A technique which has been conventionally used to create beneficial chemical products from hydrocarbons was to use a large amount of metallic peroxides in hazardous organic solvents to oxidiz ... read more Related Links King Abdullah University of Science and Technology Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |