. 24/7 Space News .
DRAGON SPACE
China's satellite sends unbreakable cipher from space
by Staff Writers
Beijing (XNA) Aug 14, 2017


"Micius has ushered in the construction of global quantum communication, the study of space quantum physics and experimental verification of quantum gravity theories. It helps China's race to control the command point of quantum science and technology, and enables China to become a leader in the field," Bai said.

Chinese scientists have become the first to realize quantum key distribution from a satellite to the ground, laying the foundation for building a hack-proof global quantum communication network.

The achievement based on experiments conducted with the world' s first quantum satellite, Quantum Experiments at Space Scale (QUESS), was published in the authoritative academic journal Nature on Thursday.

The Nature reviewers commented that the experiment was an impressive achievement, and constituted a milestone in the field.

Nicknamed "Micius," after a 5th Century B.C. Chinese philosopher and scientist who has been credited as the first person ever to conduct optical experiments, the 600-kilogram-plus satellite was sent into a sun-synchronous orbit at an altitude of 500 kilometers on Aug. 16, 2016.

Pan Jianwei, lead scientist of QUESS and an academician of the Chinese Academy of Sciences (CAS), said the satellite sent quantum keys to ground stations in Xinglong, in north China's Hebei Province, and Nanshan, near Urumqi, capital of northwest China's Xinjiang Uygur Autonomous Region.

The communication distance between the satellite and the ground station varies from 645 kilometers to 1,200 kilometers, and the quantum key transmission rate from satellite to ground is up to 20 orders of magnitude more efficient than that expected using an optical fiber of the same length, said Pan.

When the satellite flies over China, it provides an experiment window of about 10 minutes. During that time, the 300 kbit secure key can be generated and sent by the satellite, according to Pan.

"That, for instance, can meet the demand of making an absolute safe phone call or transmitting a large amount of bank data," Pan said.

"Satellite-based quantum key distribution can be linked to metropolitan quantum networks where fibers are sufficient and convenient to connect numerous users within a city over 100 km. We can thus envision a space-ground integrated quantum network, enabling quantum cryptography- most likely the first commercial application of quantum information- useful at a global scale," Pan said.

The establishment of a reliable and efficient space-to-ground link for faithful quantum state transmission paves the way to global-scale quantum networks, he added.

Hack-Proof Communication
Private and secure communications are highly sought after. Traditional public key cryptography usually relies on the perceived computational intractability of certain mathematical functions.

But a powerful quantum computer, which scientists around the world are still developing, is viewed as a threat in that it could make everything on a conventional computer hackable.

However, like a coin with two sides, quantum mechanics also serves as protector of information.

By harnessing quantum entanglement, the quantum key technology is used in quantum communications, ruling out the possibility of wiretapping and perfectly securing the communication.

Pan explained that a quantum key is formed by a string of random numbers generated between two communicating users to encode information. Once intercepted or measured, the quantum state of the key will change, and the information being intercepted will self-destruct.

An eavesdropper on the quantum channel attempting to gain information on the key will inevitably introduce disturbance to the system, and can be detected by the communicating users, said Pan.

Breaking Limits In Space
In practice, the achievable distance for quantum key distribution has been limited to a few hundred kilometers, due to the loss of photons in transmission through optical fibers, Pan said.

"If we transmit the quantum key through a 1,200-km fiber, even with a perfect single-photon source and ideal single-photon detectors, we would obtain only a 1-bit sifted key over six million years," Pan said.

A more direct and promising solution for global-scale quantum key distribution is through satellites. Transmitting photons between the satellite and ground stations greatly broadens the reach of quantum communication, Pan said.

Compared with terrestrial channels, the satellite-to-ground connection has significantly reduced losses. This is mainly because the effective thickness of the atmosphere is 10 km, and most of the photon's transmission path is in empty space with negligible absorption and turbulence.

Scientists expect quantum communications to fundamentally change human development in the next two or three decades, as there are enormous prospects for applying the new generation of communication in fields like defense, military and finance.

China's Quantum Leap
In the same issue of Nature, another experiment, the ground-to-satellite quantum teleportation, conducted via Micius, was also published. In June, the same team's experiment in distribution of entangled photon pairs over 1,200 kilometers was published as a cover article in the academic journal Science.

Chinese scientists have completed all the experiments designed for Micius a year ahead of schedule.

Karl Ziemelis, chief physical sciences editor at Nature, said that with the publication of these new papers, Pan and his colleagues have completed their demonstration of a trio of quantum experiments that will be central to any global space-based quantum Internet.

"I mean you could say that the sky's the limit for quantum technologies, but that is a little bit conservative actually. They've gone beyond the sky with these latest experiments. And it's a testament to China's investments and significant efforts in the physical sciences that this group has been able to push research in practical quantum communication technologies to such an astronomical height," said Ziemelis.

CAS president Bai Chunli said the achievements show China has reached a leading position in the field of quantum communication research.

"Micius has ushered in the construction of global quantum communication, the study of space quantum physics and experimental verification of quantum gravity theories. It helps China's race to control the command point of quantum science and technology, and enables China to become a leader in the field," Bai said.

In addition to Micius, China has launched a series of space science satellites, including the Dark Matter Particle Explorer, the recoverable satellite SJ-10, and the Hard X-ray Modulation Telescope, over the past two years.

Bai said China plans to launch more space science satellites in the next five to 10 years, focusing on the frontiers of science, such as the study of the origin of the universe, black holes, gravitational waves, exoplanets, resources exploration of the solar system and solar storms.

The implementation of these projects is expected to bring more scientific breakthroughs, and help China to become a powerful nation in the field of science and technology, Bai said.

Source: Xinhua News

DRAGON SPACE
Chinese satellite Zhongxing-9A enters preset orbit
Beijing (XNA) Jul 07, 2017
The communications satellite Zhongxing-9A has entered its preset orbit over two weeks after its launch on June 19. Abnormal performance was identified during the third phase of the Long March-3B launch, which failed to deliver the satellite as planned. The satellite conducted 10 orbit adjustments with its onboard thrusters and Wednesday reached its preset orbit at 101.4 degrees east ... read more

Related Links
China National Space Administration
The Chinese Space Program - News, Policy and Technology
China News from SinoDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

DRAGON SPACE
Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

DRAGON SPACE
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

VSS Unity Flies with Propulsion Systems Installed and Live

Space Launch System Solid Rocket Boosters 'on Target' for First Flight

DRAGON SPACE
For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

DRAGON SPACE
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

DRAGON SPACE
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Lockheed Martin invests $350M in state-of-the-art satellite production facility

Airbus DS to expand cooperation with Russia

DRAGON SPACE
Researchers 3-D print first truly microfluidic 'lab on a chip' devices

2-faced 2-D material is a first at Rice

Fewer defects from a 2-D approach

Tiny terahertz laser could be used for imaging, chemical detection

DRAGON SPACE
Deep-sea animals eating plastic fibers from clothing

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

DRAGON SPACE
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Twilight observations reveal huge storm on Neptune









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.