. | . |
Nanoscale diamond 'racetrack' becomes breakthrough Raman laser by Staff Writers Washington DC (SPX) Oct 23, 2015
Diamonds are renowned for their exquisite beauty and unrivaled durability, but they also are highly prized by scientists and engineers for their exceptional optical and physical properties. In a first-of-its-kind demonstration of diamond's promising technological applications, a team of engineers from Harvard University has developed a new class of Raman laser small enough to operate on a photonic chip. This optical component uses a nanoscale racetrack-shaped diamond resonator to convert one frequency of laser light to an entirely different range of wavelengths, opening up new possibilities for broadband data communications and a host of other applications. The new proof-of-concept results are published in The Optical Society's high-impact journal Optica. "We present the first observation of Raman lasing in a diamond based device integrated onto a silicon chip," said Vivek Venkataraman, Loncar Laboratory, Harvard University and co-author on the paper. "This is, by far, the lowest operating power diamond Raman laser to date, and the longest wavelength produced in any kind of on-chip Raman laser." According to the research team, this demonstration marks diamond as only the second material besides silicon to show Raman lasing in a completely integrated photonic chip, which opens up promising new areas of research for both short-and-long range optical communications.
Raman Lasers: Light of a Different Color An efficient means of achieving this change of color or wavelength of a laser is through an optical phenomenon known as stimulated Raman scattering. If enough optical energy is pumped into a material, a small fraction of the input light loses energy to atomic vibrations and is shifted to a specific lower frequency. This results in amplification for the lower frequency shifted wave, which when combined with an optical resonator - a device that can trap and contain light for a brief period of time - can yield a Raman laser. Such Raman lasers are well-known in optics and have applications in medical devices, chemical sensing and telecommunications. Though Raman lasing has been achieved in silicon, this material is not transparent across a wide range of colors, limiting its use to a few specific applications. Diamonds, on the other hand, are transparent across the ultraviolet, visible and infrared parts of the electromagnetic spectrum. Diamond can also use Raman scattering to provide giant color shifts across the entire spectrum. However, Raman lasers in diamond are traditionally made from bulky plates in macroscopic cavities. They also require careful alignment of components and comparatively high energy to operate. These factors have limited the ways they can be integrated into chip-based technologies. The researchers were able to harness diamond's stellar optical capabilities and create a new class of Raman laser by designing a nanoscale circular diamond resonator on a photonic chip. The device works by sending pump laser light of one frequency down an optical waveguide that passes within hundreds of nanometers of the resonator allowing the light to, in essence, jump the tracks and begin racing around the circular resonator. As a constant stream of pump photons flows into the resonator, each photon travels hundreds of times around the track until the light intensity builds up and Raman scattering produces lower energy photons known as Stokes photons. These Stokes photons, which are now at a different color, also circle around the resonator many times and stimulate the scattering of more pump photons into Stokes photons, eventually producing the coherent light of a laser. The new laser light then couples out of the resonator in the same process as before only in reverse, where it can be directed anywhere and used for a variety of applications.
Bridging Diamond and Silicon on the Nanoscale "The manufacturing process is quite simple and enables us to produce resonators of multiple shapes and sizes that could be easily integrated into existing optoelectronic technologies," said Pawel Latawiec, Loncar Laboratory, Harvard University and co-author on the paper. The Raman laser reported in the paper works at wavelengths near two microns, which has been identified for next generation optical telecommunication networks. The researchers also report that since diamonds are transparent across almost the entire optical spectrum, the operating principle they demonstrate can be readily translated to other wavelength ranges simply by using different pump lasers. "Ours is a proof-of-principle demonstration," noted Venkataraman, "and many aspects can be further optimized and improved for a commercial product. But these are all engineering and technological improvements and the physics itself is well understood and demonstrated to work." Paper: "On-Chip Diamond Raman Laser," Pawel Latawiec, et al., Optica, 2, 11, 924 (2015).
Related Links The Optical Society Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |