. 24/7 Space News .
NANO TECH
Nanobubbles in nanodroplets
by Staff Writers
Freiburg, Germany (SPX) Jan 13, 2020

Excitation of helium nanodroplets by ultra-short laser pulses.

A team headed by Professor Frank Stienkemeier at Freiburg's Institute of Physics and Dr. Marcel Mudrich, professor at the University of Aarhus in Denmark, has observed the ultrafast reaction of nanodroplets of helium after excitation with extreme ultraviolet radiation (XUV) using a free-electron laser in real time. The researchers have published their findings in the latest issue of Nature Communications.

Lasers generating high-intensity and ultra-short XUV and X-ray pulses give researchers new options for investigating the fundamental properties of matter in great detail. In many such experiments, material samples in the nanometer range are of particular interest. Some scientists use helium droplets no larger than a few nanometers as a means of transporting and studying embedded molecules and molecular nanostructures.

Helium droplets are ideally suited for this purpose because they possess extraordinary properties. At an extremely low temperature of only 0.37 degrees above absolute zero, they move frictionlessly and are thus considered superfluids. Moreover, helium droplets usually are inert to the embedded molecules' chemical processes and are completely transparent to infrared and visible light.

The team led by Stienkemeier and Mudrich wanted to find out how one of these superfluid droplets itself reacts when hit directly by an intense XUV laser pulse. The researchers used the world's first and only seeded free-electron laser FERMI in Trieste, Italy, which delivers high-intensity XUV pulses at a wavelength set by the team.

Supported by model calculations, the researchers identified three elementary reaction steps: A very fast localization of electrons, the population of metastable states, and the formation of a bubble that eventually bursts at the surface of the droplets and ejects a single excited helium atom.

"For the first time, we have managed to directly follow these processes in superfluid helium, which take place in an extremely short time," says Mudrich. "The results help to understand how nanoparticles interact with energetic radiation and then decay," Stienkemeier adds.

"This is essential information for the work aiming at directly imaging individual nanoparticles," he explains, "as it is being carried out at new intense radiation sources such as the European X-ray laser XFEL in Hamburg."

Research Report: "Ultrafast relaxation of photoexcited superfluid He nanodroplets"


Related Links
University of Freiburg
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
New production method for carbon nanotubes gets green light
Swansea UK (SPX) Jan 08, 2020
A new method of producing carbon nanotubes - tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics - has been given the green light by researchers, meaning work in this crucial field can continue. Single-walled carbon nanotubes are among the most attractive nanomaterials for a wide range of applications ranging from nanoelectronics to medical sensors. They can be imagined as the result of rolling a single graphene sheet into a tube. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
The Boeing Starliner

Russian Space Agency commits billions of rubles more to 'Oryol' next-gen spacecraft

Wanted: Girlfriend to fly to the Moon with Japanese billionaire

'Space unites us': First Iranian-American NASA astronaut reaches for stars

NANO TECH
Elon Musk praises results after SpaceX intentionally blows up Starship tank

Collaboration on development of next-generation rapid launch space systems

Arianespace's first launch in 2020, using Ariane 5 at the service of Eutelsat and ISRO

First NASA Artemis Rocket Core Stage loaded on Pegasus Barge

NANO TECH
NASA's Mars 2020 Rover closer to getting its name

Impressive cloud formations over Mars' northern polar ice cap

Rippling ice and storms at Mars' north pole

Mars loses water to space during warm, stormy seasons

NANO TECH
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

NANO TECH
Euroconsult forecasts satellite demand to experience a four-fold increase over the next 10 years

India to launch communication satellite to cover Gulf, Asian Countries and Australia

Satellite constellations harvest energy for near-total global coverage

ESA and EDA joint research: advancing into the unknown

NANO TECH
Skin-like sensors bring a human touch to wearable tech

Russian spy satellite has broken up in space says harvard astronomer

Ultrasound can make stronger 3D-printed alloys

NUS scientists create world's first monolayer amorphous film

NANO TECH
Telescope upgrade, move will aid in search for exoplanets

Goldilocks stars are best places to look for life

A new tool for 'weighing' unseen planets

SDSU astronomers pinpoint two new 'Tatooine' planetary systems

NANO TECH
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.