. 24/7 Space News .
TECH SPACE
Nagoya University chemists turn metal catalysis on its head for a sustainable future
by Staff Writers
Nagoya, Japan (SPX) Jun 28, 2017


A rhenium catalyst in a high oxidation state is used to hydrogenate carboxylic acids present in organic waste, producing a range of useful alcohol products. Credit Nagoya University

The uncertain future of oil feedstocks and environmental pressure are forcing the chemical industry to adapt and find new renewable sources to sustain its activities. Biomass from sources including wood, agricultural waste, and even human garbage, represents a widely available renewable feedstock that has yet to be fully tapped. The problem is that most biomass is a mess of different chemicals, which are difficult to separate and use in high-value products such as plastics and pharmaceuticals.

Carboxylic acids are one of the most common chemical groups in biomass, and their chemical reactions are particularly difficult to control in these mixtures. Currently used "catalytic hydrogenation" with metal catalysts can transform the acids into more useful alcohol groups, but also adds to the complexity of the biomass because of other side reactions and catalyst decomposition.

Recognizing the need for more selective transformations of carboxylic acid groups, a team at Nagoya University explored a different chemical approach to the catalysis of biomass.

"Traditionally, low-valent transition metal complexes are used for hydrogenation of carboxylic acids. But we found better selectivity under milder conditions using a high-valent complex, which also attacked carbon-hydrogen bonds next to the carboxylic acid," says lead author Masayuki Naruto.

Hydrogenation is essentially a reduction, during which the metal catalyzes transfer of electrons to the carboxylic acid. Low-valence metals are electron rich, which makes them the obvious choice for hydrogenation of carboxylic acids. However, the team showed that high valence metals could also react with the carboxylic acids by a different pathway, which offered much better control over the reactivity.

"The idea that high-valent transition metals are effective for this kind of reaction might go against traditional wisdom, but we have shown the potential of this approach for making high-value chemical products from biomass," says group leader Susumu Saito.

"Although, the rhenium metal catalyst we used here is rather expensive, we are now looking at recycling the catalyst and alternative tungsten and molybdenum catalysts, which should make this a truly economically viable approach for getting useful products from biomass in the future."

Research Report: "Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes"

TECH SPACE
Piling on pressure solves enduring mystery about metal's makeup
Edinburgh UK (SPX) Jun 28, 2017
Scientists have solved a decades-old puzzle about a widely used metal, thanks to extreme pressure experiments and powerful supercomputing. Their discovery reveals important fundamental aspects of the element lithium, the lightest and simplest metal in the periodic table. The material is commonly used in batteries for phones and computers. A mystery of how the metal's atoms are arrang ... read more

Related Links
Nagoya University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
NASA Statement on National Space Council

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

Return to the blue

TECH SPACE
Ariane 5 launch proves reliability and flies new fairing

Aerojet Rocketdyne advocates solar electric propulsion as central element of deep space exploration

Modified Proton-M carrier rocket to be first launched in 2019

N. Korea conducts rocket engine test: report

TECH SPACE
Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

No One Under 20 Has Experienced a Day Without NASA at Mars

TECH SPACE
China heavy-lift carrier rocket launch fails: state media

Yuanwang-3 completes ship check mission, ready for Chang'e-5 lunar probe launch

China prepares to launch second heavy-lift carrier rocket

China to launch Long March-5 Y2 in early July

TECH SPACE
Second launch doubles number of Iridium NEXT satellites in orbit to 20

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

SES Restores Capacity from AMC-9 Satellite

TECH SPACE
The sharpest laser in the world

Johns Hopkins scientists develop super-strong metal for next tech frontier

One billion suns: World's brightest laser sparks new behavior in light

Stanford engineers design a robotic gripper for cleaning up space debris

TECH SPACE
Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

NASA diligently tracks microbes inside the International Space Station

Complex Organic Molecules Found On "Space Hamburger"

NASA keeps a close eye on tiny stowaways

TECH SPACE
Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10

Topsy-Turvy Motion Creates Light-Switch Effect at Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.