. 24/7 Space News .
TECH SPACE
One billion suns: World's brightest laser sparks new behavior in light
by Staff Writers
Lincoln NB (SPX) Jun 28, 2017


A scientist at work in the Extreme Light Laboratory at the University of Nebraska-Lincoln, where physicists using the brightest light ever produced were able to change the way photons scatter from electrons. Credit University Communication|University of Nebraska-Lincoln

Physicists from the University of Nebraska-Lincoln are seeing an everyday phenomenon in a new light.

By focusing laser light to a brightness one billion times greater than the surface of the sun - the brightest light ever produced on Earth - the physicists have observed changes in a vision-enabling interaction between light and matter.

Those changes yielded unique X-ray pulses with the potential to generate extremely high-resolution imagery useful for medical, engineering, scientific and security purposes. The team's findings, detailed June 26 in the journal Nature Photonics, should also help inform future experiments involving high-intensity lasers.

Donald Umstadter and colleagues at the university's Extreme Light Laboratory fired their Diocles Laser at helium-suspended electrons to measure how the laser's photons - considered both particles and waves of light - scattered from a single electron after striking it.

Under typical conditions, as when light from a bulb or the sun strikes a surface, that scattering phenomenon makes vision possible. But an electron - the negatively charged particle present in matter-forming atoms - normally scatters just one photon of light at a time. And the average electron rarely enjoys even that privilege, Umstadter said, getting struck only once every four months or so.

Though previous laser-based experiments had scattered a few photons from the same electron, Umstadter's team managed to scatter nearly 1,000 photons at a time. At the ultra-high intensities produced by the laser, both the photons and electron behaved much differently than usual.

"When we have this unimaginably bright light, it turns out that the scattering - this fundamental thing that makes everything visible - fundamentally changes in nature," said Umstadter, the Leland and Dorothy Olson Professor of physics and astronomy.

A photon from standard light will typically scatter at the same angle and energy it featured before striking the electron, regardless of how bright its light might be. Yet Umstadter's team found that, above a certain threshold, the laser's brightness altered the angle, shape and wavelength of that scattered light.

"So it's as if things appear differently as you turn up the brightness of the light, which is not something you normally would experience," Umstadter said. "(An object) normally becomes brighter, but otherwise, it looks just like it did with a lower light level. But here, the light is changing (the object's) appearance. The light's coming off at different angles, with different colors, depending on how bright it is."

That phenomenon stemmed partly from a change in the electron, which abandoned its usual up-and-down motion in favor of a figure-8 flight pattern. As it would under normal conditions, the electron also ejected its own photon, which was jarred loose by the energy of the incoming photons. But the researchers found that the ejected photon absorbed the collective energy of all the scattered photons, granting it the energy and wavelength of an X-ray.

The unique properties of that X-ray might be applied in multiple ways, Umstadter said. Its extreme but narrow range of energy, combined with its extraordinarily short duration, could help generate three-dimensional images on the nanoscopic scale while reducing the dose necessary to produce them.

Those qualities might qualify it to hunt for tumors or microfractures that elude conventional X-rays, map the molecular landscapes of nanoscopic materials now finding their way into semiconductor technology, or detect increasingly sophisticated threats at security checkpoints. Atomic and molecular physicists could also employ the X-ray as a form of ultrafast camera to capture snapshots of electron motion or chemical reactions.

As physicists themselves, Umstadter and his colleagues also expressed excitement for the scientific implications of their experiment. By establishing a relationship between the laser's brightness and the properties of its scattered light, the team confirmed a recently proposed method for measuring a laser's peak intensity. The study also supported several longstanding hypotheses that technological limitations had kept physicists from directly testing.

"There were many theories, for many years, that had never been tested in the lab, because we never had a bright-enough light source to actually do the experiment," Umstadter said. "There were various predictions for what would happen, and we have confirmed some of those predictions.

"It's all part of what we call electrodynamics. There are textbooks on classical electrodynamics that all physicists learn. So this, in a sense, was really a textbook experiment."

Research Report

TECH SPACE
Changing the color of laser light on the femtosecond time scale
Tokyo, Japan (SPX) Jun 16, 2017
How can the color of laser light be changed? One popular method to achieve this is the so-called second harmonic generation (SHG) effect, which doubles the frequency of light and hence changes its color. However, observing this nonlinear effect requires a polar crystal in which inversion symmetry is broken. For this reason, identifying crystals that can elicit strong SHG has been an import ... read more

Related Links
University of Nebraska-Lincoln
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia's Roscosmos May Provide Indian Astronauts With Training in Future

Return to the blue

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

TECH SPACE
80th consecutive success for Ariane 5 with launch of Hellas Sat, Inmarsat and ISRO

SES and MDA Announce First Satellite Life Extension Agreement

ArianeGroup starts production of VINCI engine combustion chamber

Amtrak to SpaceX Launch, Wifi hack, Spectacular trip, But where's my SatPhone...

TECH SPACE
Mars rover Opportunity on walkabout near crater rim

Laser-targeting AI Yields More Mars Science

Opportunity Straightens Wheel, Resumes Driving

No One Under 20 Has Experienced a Day Without NASA at Mars

TECH SPACE
China to launch Long March-5 Y2 in early July

With a Strong Partner Like Russia, Nothing Would Stop China's New Space Station

China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

TECH SPACE
SES Restores Capacity from AMC-9 Satellite

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

Second launch doubles number of Iridium NEXT satellites in orbit to 20

TECH SPACE
Stanford engineers design a robotic gripper for cleaning up space debris

Making ferromagnets stronger by adding non-magnetic elements

A chemical solution to shrink digital data storage

Smooth propagation of spin waves using gold

TECH SPACE
NASA keeps a close eye on tiny stowaways

Could a Dedicated Mission to Enceladus Detect Microbial Life There

New branch in family tree of exoplanets discovered

NASA discovers 10 new Earth-size exoplanets

TECH SPACE
Topsy-Turvy Motion Creates Light-Switch Effect at Uranus

The curious case of the warped Kuiper Belt

NASA Completes Study of Future 'Ice Giant' Mission Concepts

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.