. 24/7 Space News .
CHIP TECH
Smart microchip can self-start and operate when battery runs out
by Staff Writers
Singapore (SPX) May 04, 2018

BATLESS, a smart microchip developed by a team of researchers led by Associate Professor Massimo Alioto (center) from National University of Singapore's Faculty of Engineering, can self-start and continue to operate even when the battery runs out of energy. This novel technology could enable smaller and cheaper Internet of Things (IoT) devices.

The Internet of Things (IoT), while still in its infancy, is shaping the future of many industries and will also impact our daily lives in significant ways. One of the key challenges of moving IoT devices from concept to reality is to have long-lasting operation under tightly constrained energy sources, thus demanding extreme power efficiency. IoT devices - such as sensors - are often deployed on a massive scale and in places that are usually remote and difficult to service regularly, thus making their self-sufficiency essential.

Currently, batteries in IoT devices are much larger and up to three times more expensive than the single chip they power. Their size is determined by the sensor node lifetime, which directly affects how often they need to be changed. This has an important bearing on maintenance cost and impact on the environment when batteries are disposed.

To extend the overall lifetime, the battery is usually recharged slowly by harvesting some limited power from the environment, such as using a solar cell. However, existing IoT devices cannot operate without battery, and small batteries are fully discharged more frequently. Hence, battery miniaturisation often results in highly discontinuous operation of IoT devices, as they stop functioning every time the battery runs out of energy.

To address this technology gap, a team of engineers from the National University of Singapore (NUS) has developed an innovative microchip, named BATLESS, that can continue to operate even when the battery runs out of energy. BATLESS is designed with a novel power management technique that allows it to self-start and continue to function under dim light without any battery assistance, using a very small on-chip solar cell.

This research breakthrough substantially reduces the size of batteries required to power IoT sensor nodes, making them 10 times smaller and cheaper to produce. The breakthrough has been presented at the International Solid-State Circuits Conference (ISSCC) 2018 conference in San Francisco, the premier global forum for presenting advances in solid-state circuits and systems-on-a-chip.

The leader of the NUS research team, Associate Professor Massimo Alioto from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, said "We have demonstrated that batteries used for IoT devices can be shrunk substantially, as they do not always need to be available to maintain continuous operation. Tackling this fundamental problem is a major advancement towards the ultimate vision of IoT sensor nodes without the use of batteries, and will pave the way for a world with a trillion IoT devices."

Operate without battery
Battery indifference is the ability for IoT devices to continue operations, even when the battery is exhausted. It is achieved by operating in two different modes - minimum-energy and minimum-power. When the battery energy is available, the chip runs in minimum-energy mode to maximise the battery lifetime.

However, when the battery is exhausted, the chip switches to the minimum-power mode and operates with a tiny power consumption of about half a nanoWatt - this is about a billion times smaller than the power consumption of a smartphone during a phone call. Power can be provided by a very small on-chip solar cell that is about half a square millimetre in area, or other forms of energy available from the environment, such as vibration or heat.

The chip's ability to switch between minimum energy and minimum power mode translates into aggressive miniaturisation of batteries from centimetres down to a few millimetres. The BATLESS microchip enables the uncommon capability to uninterruptedly sense, process, capture and timestamp events of interest, and for such valuable data to be wirelessly transmitted to the cloud when the battery becomes available again.

Despite being in minimum-power mode when battery is not available, the reduced speed of the microchip is still adequate for numerous IoT applications that need to sense parameters that vary slowly in time, including temperature, humidity, light, and pressure. Among many other applications, BATLESS is very well suited for smart buildings, environmental monitoring, energy management, and adaptation of living spaces to occupants' needs.

Assoc Prof Alioto added, "BATLESS is the first example of a new class of chips that are indifferent to battery charge availability. In minimum-power mode, it uses 1,000 to 100,000 times less power, compared to the best existing microcontrollers designed for fixed minimum-energy operation.

"At the same time, our 16-bit microcontroller can also operate 100,000 times faster than others that have been recently designed for fixed minimum-power operation. In short, the BATLESS microchip covers a very wide range of possible energy, power, and speed trade-offs, as allowed by the flexibility offered through the two different modes."

Self-start without battery
BATLESS is also equipped with a new power management technique that enables operations to be self-started, while being powered directly by the tiny on-chip solar cell, with no battery assistance. The team had demonstrated this at 50-lux indoor light intensity, which is equivalent to the dim light available at twilight, and corresponds to nanoWatts of power. This makes BATLESS indifferent to battery availability, addressing a previously unsolved challenge in battery-less chips.

Next steps
The NUS Engineering team is now exploring new solutions to build complete battery indifferent systems that cover the entire signal chain from sensor to wireless communications, thus expanding the current work on microcontrollers and power management.

The research team aims to demonstrate a solution that shrinks the battery to millimetres, with the long-term goal of completely eliminating the need for it. This will be a major step towards the realisation of the IoT vision worldwide, and also make our planet greener and smarter.

Research paper


Related Links
National University of Singapore
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Laser frequency combs may be the future of Wi-Fi
Boston MA (SPX) May 01, 2018
Wi-Fi and cellular data traffic are increasing exponentially but, unless the capacity of wireless links can be increased, all that traffic is bound to lead to unacceptable bottlenecks. Upcoming 5G networks are a temporary fix but not a long-term solution. For that, researchers have focused on terahertz frequencies, the submillimeter wavelengths of the electromagnetic spectrum. Data traveling at terahertz frequencies could move hundreds of times faster than today's wireless. In 2017, research ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
One detector doesn't 'fit all' for smoke in spacecraft

Rescue Operations Take Shape for Commercial Crew Program Astronauts

Russia develops space sauna and washing machine

'Jedi' calls on Europe to find innovation force

CHIP TECH
Return of SpaceX cargo ship delayed by rough seas

NASA Science to Return to Earth aboard SpaceX Dragon Spacecraft

China developing reusable space rocket

Meet the nuclear-powered spaceships of the future

CHIP TECH
Early Mars may have been a warm desert with occasional rain

Microbes living in a toxic volcanic lake could hold clues to life on Mars

Results of Mars 2020 heat shield testing

Bernese Mars camera CaSSIS sends first colour images from Mars

CHIP TECH
Astronauts eye more cooperation on China's space station

China unveils underwater astronaut training suit

China to launch advanced space cargo transport aircraft in 2019

China's Chang'e-4 relay satellite named "Queqiao"

CHIP TECH
UK may set up satellite program separate from EU

ESA teams ready for space

Aerospace highlights lessons from Public-Private Partnerships in space

Airbus has shipped SES-12 highly innovative satellite to launch base

CHIP TECH
Can this invasive exotic pest make better materials for industry and medicine?

DARPA taps MIT for research on high-value molecules

Atomically thin magnetic device could lead to new memory technologies

It all comes down to roughness

CHIP TECH
Helium detected in exoplanet atmosphere for the first time

Researchers simulate conditions inside 'super-Earths'

Extreme Environment of Danakil Depression Sheds Light on Mars, Titan

Ultrahigh-pressure laser experiments shed light on super-Earth cores

CHIP TECH
Fresh results from NASA's Galileo spacecraft 20 years on

What do Uranus's cloud tops have in common with rotten eggs?

Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.