![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Tucson AZ (SPX) Aug 28, 2017
NASA's OSIRIS-REx spacecraft fired its thrusters to position itself on the correct course for its upcoming Earth flyby. The spacecraft, which is on a two-year outbound journey to asteroid Bennu, successfully performed a precision course adjustment on Wednesday to prepare for the gravity slingshot on Sept. 22. This trajectory correction maneuver was the first to use the spacecraft's Attitude Control System, or ACS, thrusters in a turn-burn-turn sequence. In this type of sequence, OSIRIS-REx's momentum wheels turn the spacecraft to point the ACS thrusters toward the desired direction for the burn, and the thrusters fire. After the burn, the momentum wheels turn the spacecraft back to its previous orientation. The total thrust is monitored by an on-board accelerometer that will stop the maneuver once the desired thrust is achieved. High-precision changes in velocity, or speed and direction, will be critical when the OSIRIS-REx spacecraft operates near Bennu. Because Bennu is so small, it has only a weak gravity field. Therefore, it will only require tiny changes in velocity to do many of the maneuvers that are planned to explore and map the asteroid. The Aug. 23 maneuver began at 1 p.m. EDT and lasted for approximately one minute and 17 seconds. Preliminary tracking data indicate that the maneuver was successful, changing the velocity of the spacecraft by 1.07 miles per hour (47.9 centimeters per second) and using approximately 16 ounces (0.46 kilogram) of fuel. OSIRIS-REx will fly by Earth on Sept. 22 to use our planet's gravity to propel the spacecraft onto Bennu's orbital plane. As of Friday, Aug. 25, the spacecraft is about 10.3 million miles (16.6 million kilometers) from Earth. The mission team has another minor Earth-targeting maneuver tentatively planned for Sept. 12. Over the next few weeks, the navigation team will process daily spacecraft tracking data from Wednesday's maneuver to determine whether the additional maneuver is necessary before the Earth gravity assist. See more at Asteroid Mission
![]() Pasadena CA (JPL) Aug 21, 2017 Asteroid Florence, a large near-Earth asteroid, will pass safely by Earth on Sept. 1, 2017, at a distance of about 4.4 million miles, (7.0 million kilometers, or about 18 Earth-Moon distances). Florence is among the largest near-Earth asteroids that are several miles in size; measurements from NASA's Spitzer Space Telescope and NEOWISE mission indicate it's about 2.7 miles (4.4 kilometers) ... read more Related Links OSIRIS-REx Asteroid and Comet Mission News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |