. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Fermi, Swift missions enable a new era in gamma-ray science
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Nov 21, 2019

Ground-based facilities have detected radiation up to a trillion times the energy of visible light from a cosmic explosion called a gamma-ray burst (GRB). This illustration shows the set-up for the most common type. The core of a massive star (left) has collapsed and formed a black hole. This "engine" drives a jet of particles that moves through the collapsing star and out into space at nearly the speed of light. The prompt emission, which typically lasts a minute or less, may arise from the jet's interaction with gas near the newborn black hole and from collisions between shells of fast-moving gas within the jet (internal shock waves). The afterglow emission occurs as the leading edge of the jet sweeps up its surroundings (creating an external shock wave) and emits radiation across the spectrum for some time - months to years, in the case of radio and visible light, and many hours at the highest gamma-ray energies yet observed. These far exceed 100 billion electron volts (GeV) for two recent GRBs.

A pair of distant explosions discovered by NASA's Fermi Gamma-ray Space Telescope and Neil Gehrels Swift Observatory have produced the highest-energy light yet seen from these events, called gamma-ray bursts (GRBs). The record-setting detections, made by two different ground-based observatories, provide new insights into the mechanisms driving gamma-ray bursts.

Astronomers first recognized the GRB phenomenon 46 years ago. The blasts appear at random locations in the sky about once a day, on average.

The most common type of GRB occurs when a star much more massive than the Sun runs out of fuel. Its core collapses and forms a black hole, which then blasts jets of particles outward at nearly the speed of light. These jets pierce the star and continue into space. They produce an initial pulse of gamma rays - the most energetic form of light - that typically lasts about a minute.

As the jets race outward, they interact with surrounding gas and emit light across the spectrum, from radio to gamma rays. These so-called afterglows can be detected up to months - and rarely, even years - after the burst at longer wavelengths.

"Much of what we've learned about GRBs over the past couple of decades has come from observing their afterglows at lower energies," said Elizabeth Hays, the Fermi project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "Now, thanks to these new ground-based detections, we're seeing the gamma rays from gamma-ray bursts in a whole new way."

Two papers published in the journal Nature describe each of the discoveries. A third paper analyzes one of the bursts using a rich set of multiwavelength data from observatories in space and on the ground. A fourth paper, accepted by The Astrophysical Journal, explores the Fermi and Swift data in greater detail.

On Jan. 14, 2019, just before 4 p.m. EST, both the Fermi and Swift satellites detected a spike of gamma rays from the constellation Fornax. The missions alerted the astronomical community to the location of the burst, dubbed GRB 190114C.

One facility receiving the alerts was the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observatory, located on La Palma in the Canary Islands, Spain. Both of its 17-meter telescopes automatically turned to the site of the fading burst. They began observing the GRB just 50 seconds after it was discovered and captured the most energetic gamma rays yet seen from these events.

The energy of visible light ranges from about 2 to 3 electron volts. In 2013, Fermi's Large Area Telescope (LAT) detected light reaching an energy of 95 billion electron volts (GeV), then the highest seen from a burst. This falls just shy of 100 GeV, the threshold for so-called very high-energy (VHE) gamma rays. With GRB 190114C, MAGIC became the first facility to report unambiguous VHE emission, with energies up to a trillion electron volts (1 TeV). That's 10 times the peak energy Fermi has seen to date.

"Twenty years ago, we designed MAGIC specifically to search for VHE emission from GRBs, so this is a tremendous success for our team," said co-author Razmik Mirzoyan, a scientist at the Max Planck Institute for Physics in Munich and the spokesperson for the MAGIC collaboration. "The discovery of TeV gamma rays from GRB 190114C shows that these explosions are even more powerful than thought before. More importantly, our detection facilitated an extensive follow-up campaign involving more than two dozen observatories, offering important clues to the physical processes at work in GRBs."

These included NASA's NuSTAR mission, the European Space Agency's XMM-Newton X-ray satellite, the NASA/ESA Hubble Space Telescope, in addition to Fermi and Swift, along with many ground-based observatories. Hubble images acquired in February and March captured the burst's optical afterglow. They show that the blast originated in a spiral galaxy about 4.5 billion light-years away. This means the light from this GRB began traveling to us when the universe was two-thirds of its current age.

Another paper presents observations of a different burst, which Fermi and Swift both discovered on July 20, 2018. Ten hours after their alerts, the High Energy Stereoscopic System (H.E.S.S.) pointed its large, 28-meter gamma-ray telescope to the location of the burst, called GRB 180720B. A careful analysis carried out during the weeks following the event revealed that H.E.S.S. clearly detected VHE gamma rays with energies up to 440 GeV. Even more remarkable, the glow continued for two hours following the start of the observation. Catching this emission so long after the GRB's detection is both a surprise and an important new discovery.

Scientists suspect that most of the gamma rays from GRB afterglows originate in magnetic fields at the jet's leading edge. High-energy electrons spiraling in the fields directly emit gamma rays through a mechanism called synchrotron emission.

But both the H.E.S.S. and MAGIC teams interpret the VHE emission as a distinct afterglow component, which means some additional process must be at work. The best candidate, they say, is inverse Compton scattering. High-energy electrons in the jet crash into lower-energy gamma rays and boost them to much higher energies.

In the paper detailing the Fermi and Swift observations, the researchers conclude that an additional physical mechanism may indeed be needed to produce the VHE emission. Within the lower energies observed by these missions, however, the flood of synchrotron gamma rays makes uncovering a second process much more difficult.

"With Fermi and Swift, we don't see direct evidence of a second emission component," said Goddard's S. Bradley Cenko, the principal investigator for Swift and a co-author of the Fermi-Swift and multiwavelength papers. "However, if the VHE emission arises from the synchrotron process alone, then fundamental assumptions used in estimating the peak energy produced by this mechanism will need to be revised."

Future burst observations will be needed to clarify the physical picture. The new VHE data open a new pathway for understanding GRBs, one that will be further extended by MAGIC, H.E.S.S. and a new generation of ground-based gamma-ray telescopes now being planned.

The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.

Goddard manages the Swift mission in collaboration with Penn State in University Park, the Los Alamos National Laboratory in New Mexico and Northrop Grumman Innovation Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory and the Italian Space Agency in Italy.


Related Links
Fermi Gamma-ray Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
The role of a cavity in the hypernova ejecta of a gamma-ray burst
Pescara, Italy (SPX) Oct 04, 2019
Since 2018, a new style of research has been introduced in gamma-ray-bursts (GRBs) studies: it does not describe the prompt radiation phase observed by the Neil Gehrels Swift Observatory and the NASA Fermi Gamma-ray Space Telescope by a time-integrated spectral analysis, typically applied to long GRBs and obtaining a Band spectrum with various fitting parameters, this procedure, as recognized by David Band, does not permit a taxonomy of GRBs [1]. The approach followed by the ICRANet group, develop ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Sierra Nevada Corp. ships Shooting Star cargo module to Kennedy Space Center

Boeing Starliner to cost $90 Million per seat

NASA adds 5 more companies to bid for work on moon mission

Audit criticizes NASA for payments to Boeing in human spaceflight program

STELLAR CHEMISTRY
China sends five satellites into orbit via single rocket

SpaceX Crew Dragon releases photos of emergency escape engines test

Arianespace will orbit TIBA-1 and Inmarsat GX5 with Ariane 5

Roscosmos creates rocket-monitoring system using technology found in smart homes

STELLAR CHEMISTRY
Human Missions to Mars

Mars scientists investigate ancient life in Australia

China completes Mars lander test ahead of 2020 mission

At future Mars landing spot, scientists spy mineral that could preserve signs of past life

STELLAR CHEMISTRY
China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

Beijing eyes creating first Earth-Moon economic zone

China conducts simulated weightlessness experiment for long-term stay in space

STELLAR CHEMISTRY
China sends two global multimedia satellites into planned orbit

Tesla Completes Acquisition of Maxwell Technologies

Space Talks 2019: bringing space to you

EU must boost spending in space or be squeezed out: experts

STELLAR CHEMISTRY
Army project may lead to new class of high-performance materials

Headwall and geo-konzept Announce Hyperspectral Remote-Sensing Center in Europe

Amazon says 'bias' in Pentagon awarding $10 bn contract to Microsoft

Multimaterial 3D printing manufactures complex objects, fast

STELLAR CHEMISTRY
Exoplanet axis study boosts hopes of complex life, just not next door

First detection of sugars in meteorites gives clues to origin of life

NASA's TESS helps astronomers study red-giant stars, examine a too-close planet

Making planets in a rocket

STELLAR CHEMISTRY
Aquatic rover goes for a drive under the ice

NASA finds Neptune moons locked in 'Dance of Avoidance'

NASA scientists confirm water vapor on Europa

New Horizons Kuiper Belt Flyby object officially named 'Arrokoth'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.