. | . |
NASA's emerging microgap cooling to be tested aboard New Shepard by Lori Keesey for GSFC News Greenbelt MD (SPX) May 16, 2018
An emerging technology for removing excessive, potentially damaging heat from small, tightly packed instrument electronics and other spaceflight gear will be demonstrated for the first time during an upcoming suborbital flight aboard a reusable launch vehicle. Thermal engineer Franklin Robinson, who works at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is scheduled to fly his experiment aboard the fully reusable Blue Origin New Shepard launch vehicle to prove that the microgap-cooling technology is immune from the effects of zero gravity. The demonstration, funded by NASA's Space Technology Mission Directorate's Flight Opportunities program, is an important step in validating the system, which engineers believe could be ideal for cooling tightly packed, high-power integrated circuits, power electronics, laser heads or other devices. The smaller the space between these electronics, the harder it is to remove the heat. Because these devices are vulnerable to overheating - just like any electronic device on Earth - the cooling technology must operate under all conditions, including the microgravity environment found in space. "Frank [Robinson] is demonstrating the fundamental concept and we need the flight validation to gain confidence," said Goddard Senior Technologist for Strategic Integration Ted Swanson. "While theory predicts that the lack of gravity would have a negligible impact on the performance of microgap coolers, this needs to be demonstrated in a space-like environment. Otherwise, potential users are unlikely to commit to the technology."
Microchannel Conduits To remove heat in more traditional electronic devices, designers create a "floor plan." They keep the heat-generating circuits and other hardware as far apart as possible. The heat travels into the printed circuit board, where it is directed to a clamp in the sidewall of the electronics box, eventually making its way to a box-mounted radiator. Traditional approaches, however, would not work well for emerging 3-D integrated circuitry - a highly promising technology that could satisfy users' thirst for more computing power. With 3-D circuitry, computer chips literally are stacked atop one another and not spread over a circuit board, saving space in electronic devices and instruments. Interconnects link each level to its adjacent neighbors, much like how elevators con�nect one floor to the next in a skyscraper. With shorter wiring linking the chips, data moves both horizon�tally and vertically, improving bandwidth, computa�tional speed and performance, all while consum�ing less power. Because not all the chips are in contact with the printed circuit board, traditional cooling techniques wouldn't work well with 3-D circuitry, Robinson said, adding he began his research with NASA support to assure that the agency could take advantage of 3-D circuitry when it became available. "However, we can remove the heat by flowing a coolant through these tiny embedded channels."
Testing Effectiveness in Microgravity Should the microgap technology succeed during the demonstration, the next step would be to find an actual application and demonstrate it in space, Swanson said. Through the Flight Opportunities program, the Space Technology Mission Directorate (STMD) selects promising technologies from industry, academia and government for testing on commercial launch vehicles. The program is funded by STMD, and managed at NASA's Armstrong Flight Research Center in Edwards, California. STMD is responsible for developing the crosscutting, pioneering, new technologies and capabilities needed by the agency to achieve its current and future missions. For more Goddard technology news, visit here
US accelerating hypersonic weapons development to catch up with China, Russia Washington (Sputnik) May 11, 2018 The US Air Force has launched an ambitious campaign to expedite development of a hypersonic weapon amid concerns expressed by US officials that China and Russia are leaving the US in the dust in this category of weapons development. "I am working with the team on acceleration and I am very confident that a significant acceleration is possible," Will Roper, assistant secretary of the Air Force for acquisition, technology and logistics, told Warrior Maven May 8. The service is willing to move ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |