. 24/7 Space News .
VENUSIAN HEAT
NASA studies CubeSat mission to solve Venusian mystery
by Lori Keesey for GSFC News
Greenbelt MD (SPX) Aug 17, 2017


As seen in the ultraviolet, Venus is striped by light and dark areas indicating that an unknown absorber is operating in the planet's top cloud layer. The image was taken by NASA's Pioneer-Venus Orbiter in 1979. Image courtesy NASA. For a larger version of this image please go here.

Venus looks bland and featureless in visible light, but change the filter to ultraviolet, and Earth's twin suddenly looks like a different planet. Dark and light areas stripe the sphere, indicating that something is absorbing ultraviolet wavelengths in the planet's cloud tops.

A team of scientists and engineers working at NASA's Goddard Space Flight Center in Greenbelt, Maryland, has received funding from the agency's Planetary Science Deep Space SmallSat Studies, or PSDS3, program to advance a CubeSat mission concept revealing the nature of this mysterious absorber situated within the planet's uppermost cloud layer.

Called the CubeSat UV Experiment, or CUVE, the mission would investigate Venus' atmosphere using ultraviolet-sensitive instruments and a novel, carbon-nanotube light-gathering mirror.

Similar in structure and size to Earth, Venus spins slowly in the opposite direction of most planets. Its thick atmosphere, consisting mainly of carbon dioxide, with clouds of sulfuric acid droplets, traps heat in a runaway greenhouse effect, making it the hottest planet in our solar system with surface temperatures hot enough to melt lead.

Although NASA and other international space programs have dispatched multiple missions to Venus, "the exact nature of the cloud top absorber has not been established," said CUVE Principal Investigator Valeria Cottini, a researcher at the University of Maryland who is leading a team of experts in the composition, chemistry, dynamics, and radiative transfer of the planet's atmosphere. "This is one of the unanswered questions and it's an important one," she added.

Past observations of Venus show that half of the solar energy is absorbed in the ultraviolet by an upper layer of the sulfuric-acid clouds, giving the planet its striped dark and light features. Other wavelengths are scattered or reflected into space, which explains why the planet looks like a featureless, yellowish-white sphere in the optical - wavelengths visible to the human eye.

Theories abound as to what causes these streaked, contrasting features, Cottini said. One explanation is that convective processes dredge the absorber from deep within Venus' thick cloud cover, transporting the substance to the cloud tops. Local winds disperse the material in the direction of the wind, creating the long streaks. Scientists theorize the bright areas as observed in the ultraviolet are probably stable against convection and do not contain the absorber, while the dark areas do.

"Since the maximum absorption of solar energy by Venus occurs in the ultraviolet, determining the nature, concentration, and distribution of the unknown absorber is fundamental," Cottini said. "This is a highly-focused mission - perfect for a CubeSat application."

To learn more about the absorber, the CUVE team, which includes Goddard scientists as well researchers affiliated with the University of Maryland and Catholic University, is leveraging investments Goddard has made in miniaturized instruments and other technologies.

In addition to flying a miniaturized ultraviolet camera to add contextual information and capture the contrast features, CUVE would carry a Goddard-developed spectrometer to analyze light over a broad spectral band - 190-570 nanometers - covering the ultraviolet and visible. The team also plans to leverage investments in CubeSat navigation, electronics, and flight software.

"A lot of these concepts are driven by important Goddard research-and-development investments," said Tilak Hewagama, a CUVE team member who has worked with Goddard scientists Shahid Aslam, Nicolas Gorius, and others to demonstrate a CubeSat-compatible spectrometer. "That's what got us started."

One of the other novel CUVE adaptations is the potential use of a lightweight telescope equipped with a mirror made of carbon nanotubes in an epoxy resin. To date, no one has been able to make a mirror using this resin.

Such optics offer several advantages. In addition to being lightweight and highly stable, they are relatively easy to reproduce. They do not require polishing - a time-consuming and often-times expensive process that assures a smooth, perfectly shaped surface.

Developed by Goddard contractor Peter Chen, the mirror is made by pouring a mixture of epoxy and carbon nanotubes into a mandrel, or mold, fashioned to meet a specific optical prescription. Technicians then heat the mold to cure and harden the epoxy. Once set, the mirror is coated with a reflective material of aluminum and silicon dioxide.

Study Objectives
The team plans to further enhance the mission's technologies and evaluate technical requirements to reach a polar orbit around Venus as a secondary payload. The team believes it would take CUVE one-and-a-half years to reach its destination. Once in orbit, the team would gather data for about six months.

"CUVE is a targeted mission, with a dedicated science payload and a compact bus to maximize flight opportunities such as a ride-share with another mission to Venus or to a different target," Cottini said. "CUVE would complement past, current, and future Venus missions and provide great science return at lower cost."

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

For more technology news, go here

VENUSIAN HEAT
NASA's Venus Chamber Breaks Record with Completion of 80-day Test
Cleveland OH (SPX) Jul 26, 2017
After an 80-day test at Venus surface conditions and a two-week cooling period, samples were removed from Glenn's Extreme Environments Rig (GEER) at NASA's Glenn Research Center in Cleveland, July 13, nearly doubling the facility's previous duration record of 42 days. This new record puts researchers one step closer to understanding the effect a long-duration exposure to Venus' atmosphere ... read more

Related Links
CubeSat Program at NASA
Venus Express News and Venusian Science


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

VENUSIAN HEAT
SpaceX launches super-computer to space station

NASA: let's say something to Voyager 1 on 40th anniversary of launch

Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

VENUSIAN HEAT
SHIIVER tank arrives at NASA's Marshall Center for spray-on foam insulation

Russia's S7 group plans to resume Zenit launches from Sea Launch platform

SpaceX launches super-computer to space station

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

VENUSIAN HEAT
Curiosity watches Martian clouds pass over Gale Crater

Opportunity takes in the panoramic view while crossing some rocky terrain

Preserving the stress of volcanic uprise on Mars

For Moratorium on Sending Commands to Mars, Blame the Sun

VENUSIAN HEAT
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

VENUSIAN HEAT
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Lockheed Martin invests $350M in state-of-the-art satellite production facility

Airbus DS to expand cooperation with Russia

VENUSIAN HEAT
Archinaut Project conducts first large-scale 3D build in space-like environment

Nature provides a key to repelling liquids

Heat-conducting plastic could lead to lighter electronics, cars

Scientists watch 'artificial atoms' assemble into perfect lattices with many uses

VENUSIAN HEAT
Tidally locked exoplanets may be more common than previously thought

TRAPPIST-1 twice as old as our solar system

Deep-sea animals eating plastic fibers from clothing

A New Search for Extrasolar Planets from the Arecibo Observatory

VENUSIAN HEAT
Scientists probe Neptune's depths to reveal secrets of icy planets

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.