. 24/7 Space News .
NASA selects proposals for new space environment missions
by Agency Writers
Washington DC (SPX) Aug 31, 2020

illustration only

NASA has selected five proposals for concept studies of missions to help improve understanding of the dynamics of the Sun and the constantly changing space environment with which it interacts around Earth. The information will improve understanding about the universe as well as offer key information to help protect astronauts, satellites, and communications signals - such as GPS - in space.

Each of these Medium-Class Explorer proposals will receive $1.25 million to conduct a nine-month mission concept study. Following the study period, NASA will choose up to two proposals to go forward to launch. Each potential mission has a separate launch opportunity and timeframe.

"We constantly seek missions that use cutting edge technology and novel approaches to push the boundaries of science," said Thomas Zurbuchen, associate administrator for NASA's Science Mission Directorate in Washington. "Each one of these proposals offers the chance to observe something we have never before seen or to provide unprecedented insights into key areas of research, all to further the exploration of the universe we live in."

NASA's heliophysics program explores the giant, interconnected system of energy, particles, and magnetic fields that fills interplanetary space, a system that constantly changes based on outflow from the Sun and its interaction with the space and atmosphere around Earth.

"Whether it's looking at the physics of our star, studying aurora, or observing how magnetic fields move through space, the heliophysics community seeks to explore the space system around us from a variety of vantage points," said Nicky Fox, director of the Heliophysics Division in NASA's Science Mission Directorate. "We carefully pick missions to provide perfectly placed sensors throughout the solar system, each offering a key perspective to understand the space that human technology and humans increasingly travel through."

Each of these new proposals seeks to add a new puzzle piece to understanding that larger system, some by looking at the Sun, some by making observations closer to home.

The proposals were selected based on potential science value and feasibility of development plans. The cost for the investigation ultimately chosen for flight will be capped at $250 million and is funded by NASA's Heliophysics Explorers' program.

The proposals selected for concept studies are:

+ Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM)

STORM would provide the first-ever global view of our vast space weather system in which the constant flow of particles from the Sun - known as the solar wind - interacts with Earth's magnetic field system, called the magnetosphere. Using a combination of observation tools that allow both remote viewing of Earth's magnetic fields and in situ monitoring of the solar wind and interplanetary magnetic field, STORM would track the way energy flows into and throughout near-Earth space. Tackling some of the most pressing questions in magnetospheric science, this comprehensive data set would provide a systemwide view of events in the magnetosphere to observe how one region affects another, helping to untangle how space weather phenomena circulate around our planet. STORM is led by David Sibeck at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

+ HelioSwarm: The Nature of Turbulence in Space Plasmas

HelioSwarm would observe the solar wind over a wide range of scales in order to determine the fundamental space physics processes that lead energy from large-scale motion to cascade down to finer scales of particle movement within the plasma that fills space, a process that leads to the heating of such plasma. Using a swarm of nine SmallSat spacecraft, HelioSwarm would gather multi-point measurements and be able to reveal the three-dimensional mechanisms that control the physical processes crucial to understanding our neighborhood in space. HelioSwarm is led by Harlan Spence at the University of New Hampshire in Durham.

+ Multi-slit Solar Explorer (MUSE)

MUSE would provide high-cadence observations of the mechanisms driving an array of processes and events in the Sun's atmosphere - the corona - including what drives solar eruptions such as solar flares, as well as what heats the corona to temperatures far above that of the solar surface. MUSE would use breakthrough imaging spectroscopy techniques to observe radial motion and heating at ten times the current resolution - and 100 times faster - a key capability when trying to study the phenomena driving heating and eruption processes, which occur on time scales shorter than previous spectrographs could observe. Such data would enable advanced numerical solar modeling and help unpack long-standing questions about coronal heating and the foundation of space weather events that can send giant bursts of solar particles and energy toward Earth. MUSE is led by Bart De Pontieu at Lockheed Martin in Palo Alto, California.

+ Auroral Reconstruction CubeSwarm (ARCS)

ARCS would explore the processes that contribute to aurora at size scales that have been rarely studied: at the intermediate scale between the smaller, local phenomena leading directly to the visible aurora and the larger, global dynamics of the space weather system coursing through the ionosphere and thermosphere. Adding crucial information to understanding the physics at the border between our atmosphere and space, these observations would provide insight into the entire magnetospheric system surrounding Earth. The mission would use an innovative, distributed set of sensors by deploying 32 CubeSats and 32 ground-based observatories. The combination of instruments and spatial distribution would provide a comprehensive picture of the drivers and response of the auroral system to and from the magnetosphere. ARCS is led by Kristina Lynch at Dartmouth University in Hanover, New Hampshire.

+ Solaris: Revealing the Mysteries of the Sun's Poles

Solaris would address fundamental questions of solar and stellar physics that can only be answered with a view of the Sun's poles. Solaris would observe three solar rotations over each solar pole to obtain observations of light, magnetic fields, and movement in the Sun's surface, the photosphere. Space researchers have never collected imagery of the Sun's poles, though the ESA/NASA Solar Orbiter will provide oblique angle views for the first time in 2025. Better knowledge of the physical processes visible from the pole is necessary to understand the global dynamics of the entire Sun, including how magnetic fields evolve and move throughout the star, leading to periods of great solar activity and eruptions approximately every 11 years. Solaris is led by Donald Hassler at the Southwest Research Institute in Boulder, Colorado.

For information about NASA and space science, visit here

Related Links
Space Weather at NASA
Space Technology News - Applications and Research

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Spacepath Communications wins large order for solid-state RF power amplifiers
Hook UK (SPX) Aug 26, 2020
SpacePath Communications, a dedicated European-based, SATCOM amplifier manufacturer and equipment supplier, has won a major order for its compact and lightweight, solid-state RF power amplifiers. SpacePath Communications has signed an agreement to supply a leading Asian telecommunications company with its solid-state power amplifiers (SSPA). The latest deal has an order value of GBP 530,000 pounds. Based on Gallium Nitride (GaN) technology, the compact SSPAs are to be used in a regional, enterpris ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

The Seventh Meeting of the Japan-U.S. Comprehensive Dialogue on Space: Joint Statement

Boeing's Starliner makes progress ahead of flight test with astronauts

ISS crew moved to Russian segment for 3 days to search for air leak

New launch opportunity begins on Sept 1 for small sats mission

Safety of SpaceX suits an 'open question' says Russian designer

Ball Aerospace completes small satellite, Green Fuel Mission

NASA's Green Propellant Infusion Mission nears completion

China releases recommended Chinese names for Mars craters

Follow Perseverance in real time on its way to Mars

Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

Africa is investing more in space and satellite industry

Satellite constellations could hinder astronomical research, scientists warn

ESA astronauts are flat out training

Ban on import of communication satellites opens up opportunity says ISRO chief

NASA selects proposals for new space environment missions

NASA engineers checking InSight's weather sensors

US to spend $625 mn on super-computing research centers

Spacepath Communications wins large order for solid-state RF power amplifiers

Bacteria could survive travel between Earth and Mars when forming aggregates

Fifty new planets confirmed in machine learning first

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

Bacteria could survive the trip to Mars in the form of thick aggregates

Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.