. 24/7 Space News .
NASA scientist over the Moon with homegrown radish research
by Jane Platt for JPL News
Pasadena CA (JPL) Jul 20, 2020

Stock illustration only. See detailed images here

While others have perfected sourdough starter or whipped up chocolate chip cookies during the pandemic, NASA scientist Max Coleman has been toiling in his kitchen over containers of baby radishes - all in the name of science.

"They have been used before in space, and they germinate very, very fast," Coleman says.

Previously, other researchers had sent radishes to the International Space Station, and now, Coleman and his colleagues hope to help the quest for astronauts to eventually grow their own food on the lunar surface.

The team of 13 is trying to simulate - physically and chemically - lunar surface soil, or regolith, here on Earth, including such details as how quickly water is absorbed between lunar soil grains, how big the particles are, and what proportions of minerals are ideal.

Video Meetings Plant the Seed
Coleman and team spent over a year doing their research at NASA's Jet Propulsion Laboratory in Southern California and were about to start hands-on tests of sensors that might eventually be used on the Moon. Mandatory telework in response to the coronavirus interrupted those plans.

Then, one day in April during a video team meeting from home, an idea sprouted in Coleman's head for a homemade radish lab. They were discussing how they could, hypothetically, try growing some radishes with no nutrients and some with a small amount of nutrients.

"Let's not theorize about this; why don't we just do it!" was Coleman's battle cry. And before the virtual meeting had ended, he had bought a batch of radish seeds online to be delivered to his home. A subsequent video meeting prompted another impulse buy. "Video chats clearly stimulate me," Coleman jokes. This time, it was desert sand, which is often sold to be used as a top layer to make indoor potted plants look pretty.

Armed with the radish seeds and desert sand, Coleman was ready for serious business.

"We're trying to show astronauts can use horticulture to grow their own food on the Moon," he explains. "We want to do one tiny step in that direction, to show that lunar soil contains stuff which can be extracted from it as nutrients for plants. This includes getting the right chemical elements to allow plants to make chlorophyll and grow cell walls."

Because the Moon always faces Earth as it orbits our planet every month, it is essentially turning on its axis once a month. The lunar timeline (one Moon day equals 28 Earth days, 14 days of daylight) makes quick-sprouting radishes a good bet for relatively rapid experiment results. It will be possible to complete the experiment in one lunar day, starting just after dawn.

Research in the Home Kitchen
Coleman started his first radish experiment by cutting paper towels into small squares, adding water, stuffing them into a container, then tucking in three radish seeds at a depth of half an inch. Only one sprouted - apparently the one that somehow got enough oxygen to germinate. Once the sand arrived, Coleman ditched the paper towels and started using it in a four-compartment deli container.

He put varying amounts of water in the four sections. The result: Radishes in the section with the least water germinated first and best, which was interesting because, he says, "we want to see how little water we can get away with." Coleman adds, "This immediately had an impact on how we would do the experiment with water and lunar soil if we get it to the Moon." He considers this an example of serendipity in research.

Coleman also raided the kitchen for chopsticks to make holes in the soil surface for each seed. And at one point, he added kitchen-counter "electrodes" to measure moisture levels and track evaporation in the desert sand: He folded aluminum foil four or five times to make a strip, then used his battery tester to measure electrical resistance from the water.

The team's research is aimed at biological in-situ resource utilization - tackling such challenges as where to get food as opposed to how to get water and oxygen. Coleman explains that, for future astronauts, "the more you can use what's already there, the more efficient you can be because you don't have to carry that much with you." Their specific work is to develop a small payload on a commercial spacecraft going to the Moon, which, if selected, would be delivered to the lunar surface through the NASA Commercial Lunar Payload Services (CLPS) initiative. The team planned to develop the experiment as a suitable payload for a CLPS spacecraft in terms of size, mass, power requirement, and communication needs.

By going to the Moon, the radish experiment would complement plant predecessors tested under microgravity conditions on the space station. For example, the currently flying Vegetable Production System, or Veggie, features plants growing in specially prepared soil, with the goal of eventually providing food for space station astronauts.

"We can't properly test here on Earth with perfect lunar soil, but we're doing as much here as we can. Then we want to show that it actually does work on the Moon," Coleman says.

Principal Investigator Pamela E. Clark leads the JPL radish research team, which includes John Elliott, who started the project, and Gerald Voecks, who works with Coleman on measurements. Together, they're designing the potential Moon experiment and a payload that would put lunar soil in a chamber, where water and air would be added in an attempt to raise radishes. JPL's Human/Robotic and Emerging Capabilities Office is funding the current work.

Growing Young Minds
Coleman has been documenting the sprouting radish experiment with his smartphone and sharing the progress with his 7-year-old granddaughter, Lillibette, in England. He even ordered a second radish-seed purchase for her. Her response to her grandfather? "I could plant them and eat radishes, or I could plant them and do what you're doing."

Coleman says that if the lunar payload concept were to fly someday, Lillibette and other children might be able to follow the mission. The team plans to include a small, simple camera, and make images and other data available so that, as he envisions it, "kids of Earth can watch radishes grow on the Moon."

Related Links
NASA Commercial Lunar Payload Services (CLPS) initiative
Space Tourism, Space Transport and Space Exploration News

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

NASA advances food-in-space technology
Washington DC (UPI) Apr 14, 2020
NASA is prepared to plant new varieties and bigger quantities of food in gardens on the International Space Station as part of its planned Moon to Mars program. While astronauts in orbit harvest and sample leafy greens grown in space, scientists on the ground in Florida develop new space crops using the same equipment. Growing food in space has become part of NASA's planned Artemis missions for travel to the moon and Mars because the agency has found that gardens on board boost astronaut ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Astronauts add expertise, refine space station science in orbit

Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

NASA adds software experts to work toward new Boeing capsule flight

Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

NASA astronauts and Russian cosmonauts perform habitability test of Crew Dragon capsule

Rocket Lab promises customers to 'Leave No Stone Unturned' launch failure

UAE again delays Mars probe launch over weather

The quest to find signs of ancient life on Mars

Humanity on Mars? Technically possible, but no voyage on horizon

NASA's Perseverance rover will scour Mars for signs of life

Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

Columbus gets a new European science rack

China launches new commercial telecommunication satellite

SpaceX delays launch of mini-satellites

Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

Liverpool researchers build robot scientist that has already discovered a new catalyst

Deutsche Bank teams up with Google in cloud services

Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

NASA Awards SETI Institute Contract for Planetary Protection Support

Supercomputer reveals atmospheric impact of gigantic planetary collisions

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.