24/7 Space News
NASA harnesses US Navy spinning device to simulate spaceflight
A view of the cockpit of the Kraken, a device that can be configured to disorient those strapped inside. The parallel tracks on the left and right allow the cockpit to lurch forward and backward while it independently spins.
NASA harnesses US Navy spinning device to simulate spaceflight
by Nathan Cranford and Jennifer Turner
Wright-Patterson AFB OH (SPX) May 18, 2023

A monster of a machine is now allowing NASA scientists to study on Earth the disorientation that astronauts may encounter in space.

This machine is the U.S. Navy's Kraken, a device that can vigorously spin occupants like laundry churning in a washing machine. A new collaboration with the Navy will allow NASA scientists to use the Kraken to build strategies that aim to ease motion sickness. Such strategies may not only help astronauts but could also offer treatment options for patients with balance issues here on Earth.

Astronauts may experience motion sickness on their launch into space and on their return to Earth. Symptoms include dizziness, nausea, and vertigo - a feeling of spinning - which can make it difficult to carry out mission-critical tasks when landing or exiting spacecraft.

"Shortly after liftoff in the space shuttle, I felt like I was on a merry-go-round as my body hunted for what was up, down, left, and right," said NASA astronaut Douglas Wheelock. "Crew must prepare for the confusion that they will likely undergo during these gravitational transitions."

Enter the Kraken, a 50-foot-long, 100-ton platform at Wright-Patterson Air Force Base near Dayton, Ohio. It can be configured to replicate different types of flight to disorient occupants through sudden shifts in roll, pitch, and yaw, superimposed onto horizontal and vertical lurches. A spaceflight setting on the Kraken will allow NASA scientists to study whether a specific technology, coupled with head movements, may help soothe the motion sickness experienced by some astronauts.

"The first time I saw the Kraken in person, I was impressed by how large and agile the machine is," said Laura Bollweg, who manages astronaut health research at NASA's Johnson Space Center in Houston. "With the ability to move six directions on its axis, the device can simulate complex flight scenarios that are difficult to recreate on Earth, including landing scenarios that could induce vertigo and nausea."

In an upcoming study, NASA and Navy scientists will recruit 24 active duty service members to ride in the Kraken for 60 minutes. The Kraken will then spin them at accelerations reaching three times the force of gravity to simulate what astronauts experience when they first return to Earth.

Upon exiting the machine, 12 volunteers will perform prescribed head turns and tilts while wearing video goggles that track their head and eye movements. The technology will capture measurements associated with motion sickness, including how much participants blink as well as changes to heart rate. The volunteers will also respond to real-time questions about how disorientated and sick they feel.

The remaining Kraken riders will not perform any head movement protocols. All volunteers will then complete four tasks - they'll test their balance standing on foam with eyes open and closed, their speed on a nearly 33-foot (10-meter) walk, their endurance on a two-minute walk, and the length of time they take to finish a standing and walking test that includes stepping over an obstacle. Normally these tasks would be easy, but after the ride, dizziness and poor balance may make them take longer.

"Anecdotes from astronauts suggest that performing slight head movements helps them recover a sense of balance more quickly," said study lead Michael Schubert, a neurophysiologist at Johns Hopkins University in Baltimore, Maryland. "Tests with the Kraken will allow us to rigorously determine what head movements, if any, help astronauts to quickly recover their sense of balance."

If verified, astronauts could adopt specific protocols to help them quickly adapt to gravitational changes during spaceflight, including on longer and more distant missions, said Schubert.

As part of a two-pronged strategy, Schubert's team also aims to see if the head motions can help patients with balance issues. Apart from riding in the Kraken, 24 civilian patients will attempt to complete the same four tasks performed by service members. Half will perform the same set of head motions beforehand, and the other half won't.

These patients have had tumors removed from their inner ears, a process which includes cutting a nerve central to maintaining balance. As a result, the patients often endure dizzy spells and vertigo. "Confirming that the head movements help patients in this study may allow NASA and the Navy to play a vital role in bringing a new set of therapies to the public," said Schubert.

"This study renews a partnership between our laboratory and NASA, tracing back to the space program through the 1960s and 1970s," said Richard Arnold, director of the Naval Aerospace Medical Research Laboratory in Dayton, Ohio, the organization that operates the Kraken. "We are excited to build on previous collaborations by addressing motion issues faced by both Naval aviators and NASA astronauts."

Related Links
Humans in Space
Space Tourism, Space Transport and Space Exploration News

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
SpaceX set to launch Vast's commercial space station and inaugural human spaceflight mission
Los Angeles CA (SPX) May 11, 2023
Vast has revealed that SpaceX is slated to launch Vast Haven-1, anticipated to be the world's premier commercial space station. The launch, targeted for no earlier than August 2025, will be swiftly followed by two manned spaceflight missions to the station. A Falcon 9 rocket will propel Haven-1 into low-Earth orbit, where it will function as a fully independent space station before eventually joining a larger Vast station currently under development. Following Haven-1's deployment, Falcon 9 will c ... read more

NASA selects winners, announces final phase of Space Food Challenge

Solar Foods one of the Phase II winners of NASA Deep Space Food Challenge

The Huginn mission - an overview

ISS welcomes its first Saudi astronauts, in private mission

Rocket Lab scoops up Virgin Orbit Long Beach California assets

South Korea postpones third launch of homegrown rocket

Rocket carrying Saudi man and woman launches to ISS

Pair of NASA weather satellites to launch from New Zealand

MAHLI works the night shift: Sols 3837-3838

Ancient northern ocean on Mars evidenced by in situ observations of marine sedimentary rocks

A deep underground lab could hold key to habitability on Mars

Mars rover Zhurong finds evidence of water at red planet's low latitudes

Shenzhou XVI mission to launch in days

China's next space exploration to feature new faces

"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

Iridium adds to constellation resilience with launch of spare satellites

NASA funds small business to advance tech for Space, Earth

Virgin Orbit shuts down, liquidates assets in bankruptcy auction

Arlula secures $2.2 million in seed funding to enable global space data access

Powerful Arab League communications satellite ready for night launch

Heinrich Hertz mission ready for launch

Origami heat shield: reusable for reentries

TransAstra receives Space Force contract to explore in-orbit propulsion systems

Global team simulates message from extraterrestrial intelligence to Earth

NASA's Spitzer, TESS find potentially volcano-covered Earth-size world

Astronomers observe the first radiation belt seen outside of our solar system

Researchers uncover how primordial proteins formed on prebiotic earth

First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

Subscribe Free To Our Daily Newsletters

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.