. | . |
NASA Technologies slated for testing on Blue Origin's New Shepard by Elizabeth DiVito for Ames News Moffett Field CA (SPX) Aug 26, 2021
While there won't be humans on Blue Origin's 17th New Shepard mission, the fully reusable launch vehicle will carry technologies from NASA, industry, and academia aboard. The agency's Flight Opportunities program supports six payload flight tests, which are slated for lift off no earlier than Aug. 26 from the company's Launch Site One in West Texas. For some innovations, this is just one of several tests supported by NASA on different flight vehicles. Iterative flight testing helps quickly ready technologies that could eventually support deep space exploration. "This kind of iterative flight testing is exactly what Flight Opportunities is designed for," said Christopher Baker, program executive within the Space Technology Mission Directorate (STMD) at NASA Headquarters in Washington. "Leveraging a range of different vehicles to advance technologies quickly is important not only to achieving NASA's mission goals but also to maximizing the impact of these innovations in space and here on Earth."
Precision Landing Technologies for Safe Touchdown The SPLICE navigation system consists of a high-performance computer, lasers, a camera, and other sensors. It is designed to help a lander determine its precise location and velocity as it travels toward the surface of a planetary body. Several SPLICE components flew aboard New Shepard in October 2020 as part of the Tipping Point contract with Blue Origin. Supplementing data from the first SPLICE flight test, the upcoming flight will further mature the NASA-developed technologies for future lunar demonstrations. In particular, SPLICE's navigation Doppler lidar developed at NASA's Langley Research Center in Hampton, Virginia, is slated for future flights on two commercial robotic lunar landers through the agency's Commercial Lunar Payload Services (CLPS) initiative.
Propellant Gauging Innovation Carthage researchers aim to increase the accuracy of measuring propellant levels in space - a mission-critical need, especially during dynamic events such as engine burns and in the latter stages of a mission. The flight will enable the team to evaluate new propellant gauging methods that support the mass measurement of fluid under varying pressures. "We've successfully proven that our technology is superior to the current state of the art in both lab tests and on parabolic flights facilitated by Flight Opportunities," said Crosby. "On the upcoming New Shepard flight, we're going to attempt to prove that we can achieve that same performance during a simulation of on-orbit refueling - and we are much more confident we will achieve our objectives because of our parabolic flight experience."
Space-Based Trash Recycling Method OSCAR is designed to convert trash and metabolic waste into a blend of useful gases, including carbon dioxide, water vapor, and methane. Astronauts could vent the generated gas into space or use it as building blocks for products such as water, oxygen, or even spacecraft propellants. This recycling technology could reduce the volume and mass of trash on long-duration missions, minimize launch mass from Earth, and promote sustainable human space exploration. OSCAR's first suborbital flight test gave the research team data about how microgravity affects the thermal processes that allow waste products to burn in the reactor. The upcoming rocket flight will provide additional microgravity data to help validate OSCAR's conversion technologies.
Other Technologies Aboard Exploring electrostatic regolith interactions: This University of Central Florida payload is designed to characterize regolith's electrostatic dynamics and behavior for enhanced safety on lunar missions. Suborbital biological imaging: Building on 20 years of microgravity plant research, University of Florida investigators are working to enable autonomous, high-resolution image data collection for a variety of biological payloads during transitions in gravity levels.
Virgin Orbit selects Redwire to provide digital engineering to support rapid development Jacksonville FL (SPX) Aug 25, 2021 Virgin Orbit has selected Redwire, a leader in mission critical space solutions and high reliability components for the next generation space economy, to provide state-of-the-art digital engineering solutions that will support multi-mission planning through systematic analysis and advanced modeling and dynamic mission simulation. This critical capability will enhance Virgin Orbit's end-to-end responsive space service offering. "Redwire is extremely proud to support Virgin Orbit with our state-of-t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |