. 24/7 Space News .
PHYSICS NEWS
NASA Marshall team soars to success in microgravity
by Janet Anderson for MSFC News
Huntsville AL (SPX) May 20, 2021

Marshall's ring-sheared drop team tests their payload in weightlessness on a Zero Gravity Corporation's G-Force One aircraft. Each team member is at least partially vaccinated and was tested for COVID-19 each morning before entering flight facilities.

No force - including gravity - could hold a team of NASA researchers down in their quest for a scientific breakthrough to benefit life on Earth and in space.

Scientists from NASA's Marshall Space Flight Center in Huntsville, Alabama, completed two parabolic flights April 28 and 29 to test modifications to a payload called the ring-sheared drop.

"This demonstration proved that the modified hardware is capable of deploying and pinning each of the protein solutions that will be used in an experiment using the ring-sheared drop hardware on the International Space Station," said Dr. Louise Strutzenberg, co-investigator on the ring-sheared drop parabolic re-flight experiment. "The lessons learned will prepare us to take the next steps before resuming testing on the space station."

The team flew out of Fort Lauderdale, Florida, on Zero Gravity Corporation's modified Boeing 727 aircraft, which achieves periods of variable gravity through a series of maneuvers called parabolas. The plane, called G-Force One, completed 30 parabolas each day - enabling the teams to tend to their experiment in weightlessness for 22-second intervals.

Developed by Marshall and Rensselaer Polytechnic Institute of Troy, New York, the experiment studies the formation of potentially destructive amyloid fibrils, or protein clusters, like those found in the brain tissue of patients battling neurodegenerative diseases - such as Alzheimer's and Parkinson's.

Such illnesses damage neurons, the drivers of the human nervous system, which chemically control information processing necessary for the mind and body to operate. The accumulation of these amyloid fibrils refuse to dissolve the way most proteins do. Instead, they build up over time until disrupting the healthy function of tissues and organs - which can be debilitating, or in some cases, fatal.

In Earth-based experiments, researchers determined that amyloid fibrils may be created by shear flow, or the difference of flow velocity between adjacent layers of a liquid. In grounded experimentation, that formation is affected by the shape of experiment containers and by heat convection - the tendency of hotter, less dense material to rise in fluid and colder, denser material to sink due to gravity.

However, conducting the experiment in microgravity eliminates heat convection and allows liquids to form in spherical drops, eliminating the need for a container. In these weightless conditions, researchers can "pin" a droplet of liquid between two rings and cultivate amyloid fibrils for study.

The ring-sheared drop payload initially launched to the International Space Station in 2019, but the hardware needed modifications to achieve the desired results. Since then, the Marshall team has been working to improve the efficacy of the experiment by making necessary adjustments before attempting more orbital deployments.

The team began with two parabolic flights in November, which allowed them to test several possible improvements to the payload. After flight, the team had approximately five months to implement lessons learned and prepare for the next flight opportunity in April.

In this April's parabolic flight campaign, the test apparatus consisted of a syringe that holds solution to be dispensed, the newly modified cage-tip tube capable of dispensing a stable liquid drop, and a motor that is activated to drive the piston in the syringe to dispense the liquid. During flight, video cameras were in position to capture the behavior of the fluid droplet as it was dispensed.

"Being weightless is truly an indescribable experience," Marshall materials science engineer Gabriel Demeneghi said. "It is even more exciting to be in microgravity to make strides on a project that you're passionate about."

On day one of flight, the team pinned two out of three protein solutions. Due to a power supply issue, the team's high-speed camera was unable to capture the pinning. However, a back-up camera captured the majority of in-flight operations. Once their feet were firmly on the ground, the scientists were able to review video footage, correct the power supply, and modify operations to increase efficiency.

On the second day of flight, the team pinned one-inch drops of all four flight fluids - gathering all necessary footage and data to analyze on the ground. In addition, they successfully pinned one-inch drops of two pre-sheared test solutions that the Rensselaer Polytechnic Institute team prepared in pre-flight activities.

NASA's Flight Opportunities program, within the Space Technology Mission Directorate, makes these experiment flights possible, facilitating rapid demonstration of promising technologies for space exploration, discovery, and results to benefit life on Earth.

The ring-sheared drop hardware is sponsored by NASA's Biological and Physical Sciences, part of the agency's Science Mission Directorate. The payload is scheduled to launch to the space station this summer from NASA's Wallops Flight Facility in Virginia, on Northrop Grumman's 16th Commercial Resupply Services mission.


Related Links
Zero Gravity Corporation
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
The gateway to weightlessness, the edge of space
Huntsville AL (SPX) Apr 29, 2021
Understanding how an experimental payload will respond to the conditions of space is crucial to a researcher's ability to confirm designs or make necessary adjustments before progressing to more costly orbital deployments. To do so, scientists often meet at "the edge of space" on a modified airplane that achieves periods of variable gravity through a series of maneuvers called parabolas. These parabolic flights provide a gateway to weightlessness, allowing research teams to tend to their experimen ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Scientists find new use for valve invented by Nikola Tesla 100 years ago

Google teams with Samsung for wearables platform

Russia to send film crew, Japanese billionaire to space

How to keep spacesuit 'underwear' clean?

PHYSICS NEWS
Flying at up to Mach 16 could become reality with UCF's developing propulsion system

First Ariane 6 fairing at Europe's Spaceport

3D printed RL10C-X engine demonstrates full mission capability during altitude hot fire test series

SpaceX to launch lunar mission paid with cryptocurrency Dogecoin

PHYSICS NEWS
Seeing NASA's Ingenuity Mars Helicopter Fly in 3D

Perseverance's Robotic Arm Starts Conducting Science

Perseverance rover captures sound of Ingenuity flying on Mars

Volcanoes on Mars could be active, raise possibility of recent habitable conditions

PHYSICS NEWS
China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

PHYSICS NEWS
Xplore opens 22,000 sq ft satellite manufacturing facility to advance satellite production

Spacecraft magnetic valve used to fill drinks

SpaceX launches 60 Starlink satellites from Florida

Egos clash in Bezos and Musk space race

PHYSICS NEWS
EU, US move to end steel row and point to China

Turkey bans import of polymer waste

Large Chinese rocket segment disintegrates over Indian Ocean

3D printing could be used in search for black holes

PHYSICS NEWS
Coldplay beam new song into space in chat with French astronaut

How planets form controls elements essential for life

First ever discovery of methanol in a warm planet-forming disk

UBCO researcher uses geology to help astronomers find habitable planets

PHYSICS NEWS
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.