. 24/7 Space News .
NASA FUSE Satellite Deciphers Key Tracer of Galaxy Evolution

FUSE studies primordial chemical relics of the Big Bang, from which all the stars, planets and life evolved. FUSE was launched aboard a Boeing Delta II rocket, and lifted off from Cape Canaveral Air Station, Florida on June 24, 1999. Credit: NASA
by Staff Writers
Greenbelt MD (SPX) Aug 18, 2006
Scientists using NASA's Far Ultraviolet Spectroscopic Explorer, or FUSE, have discovered far more "heavy" hydrogen in our Milky Way galaxy than expected, a finding that could radically alter theories about star and galaxy formation.

This form of hydrogen, called deuterium, is comprised of a proton and a neutron and was created a few minutes after the Big Bang. Deuterium is also present in the local universe and serves as a tracer for star creation and galaxy building throughout the eons.

Stars consume deuterium, and no mechanism creates it in significant amounts, so the amount of deuterium present today was expected to be much lower than the amount initially produced. Deuterium emits a telltale spectral fingerprint in the FUSE ultraviolet energy range.

The FUSE deuterium survey, six years in the making, solves a 35-year mystery concerning the uneven distribution of deuterium in the Milky Way galaxy. Yet the solution poses new questions about how stars and galaxies are made. A team led by Jeffrey Linsky of JILA, a joint institute of the University of Colorado, Boulder, and the National Institute of Standards and Technology, Gaithersburg, Md., discusses this result in the August 20 issue of The Astrophysical Journal.

"Since the 1970s we have been unable to explain why deuterium levels vary all over the place," Linsky said. "The answer we have found is as unsettling as it is exciting."

In the 1970s, NASA's Copernicus satellite found the galactic deuterium distribution to be patchy. Early FUSE observations confirmed this, a perplexing result because deuterium should be evenly mixed and as readily available as other elements for the creation of new stars.

In 2003, Bruce Draine of Princeton University, a co-author on the new result, developed computer models that showed how deuterium, compared to hydrogen, might preferentially bind to interstellar dust grains, changing from an easily detectable gaseous form to an unobservable solid form. The new FUSE data strongly support this theory.

In regions that remain undisturbed for long periods, deuterium atoms systematically leave the gas phase and replace normal hydrogen atoms in dust grains. FUSE cannot detect this non-gaseous form, which explains the low detection level of 15 parts per million hydrogen atoms within a hundred light years of the sun and values as low as 5 parts per million elsewhere.

When a region is disturbed by a supernova or hot stars, dust grains are vaporized, releasing deuterium atoms back into a gas phase. FUSE detects high deuterium levels in such regions.

Primordial deuterium concentrations are about 27 parts per million. FUSE finds concentrations as high as 23 parts per million in our galaxy. Scientists had assumed, based on theory that at least a third of the deuterium would have been destroyed over time, leaving less than the amount seen in the Milky Way. But only about 15 percent of the deuterium has been destroyed, FUSE has found, suggesting that less than the amount expected has cycled through stars.

"The peak galactic detection levels are likely close to the real total deuterium abundance in the Milky Way, with the rest of it in hiding, not destroyed," said Warren Moos of Johns Hopkins University, Baltimore, FUSE principal investigator and co-author.

If the peak levels are 23 parts per million, this implies that either significantly less material has been converted to helium and heavier elements in stars or that much more primordial gas has rained down onto our galaxy over its lifetime than had been thought.

In either case, our models of the chemical evolution of the Milky Way galaxy will have to be revised significantly to explain this new result, the team said. FUSE is a sensitive probe of how much gas has entered into galaxies and has been processed in stars.

"FUSE has solved the mystery about why the deuterium is where it is, but now scientists need to try to explain why there is so much of it," said Brian Fields of the University of Illinois, Urbana, Ill.

Related Links
FUSE



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Mystery Of Quintuplet Stars In Milky Way Solved
Rochester NY (SPX) Aug 18, 2006
For the first time, scientists have identified the cluster of Quintuplet stars in the Milky Way's galactic center, next to the super massive black hole, as massive binary stars nearing the end of their life cycle, solving a mystery that had dogged astronomers for more than 15 years.







  • Scientists Study Pioneer Anomalies
  • Voyager 1 Hits 100 AU Marker Nearly 14 Hours Out
  • Ex-Microsoft Whizz-Kid Passes Space Flight Medical
  • Space Travel Will Take Off In Five Years

  • Rovers Look Forward to A Second Martian Spring
  • Gas Jets Spawn Dark Spiders And Spots On Mars Icecap
  • AMASEing Mars
  • Digging Deep: An Interview With Chris Mckay

  • Ariane 5 Is In The Launch Zone With JCSAT-10 And Syracuse 3B
  • Russia To Launch European Weather Probe In October
  • ATK Receives $90M To Supply Motors For Missile Defense And Satellite Launch Vehicles
  • Second Ariane 5 ECA Launch Campaign Is Underway At The Spaceport

  • China To Launch 1st Environment Monitoring Satellite
  • NG Demonstrates Synthetic Aperture Laser Radar for Tactical Imagery
  • MODIS Images Western Wildfires
  • CloudSat Captures Hurricane Daniel's Transformation

  • Planetary Scientists Support Proposed Redefinition Of A Planet
  • The IAU Draft Definition Of Planets And Plutons
  • Solar System May Soon Have 12 Planets, And Still Counting
  • NASA's Spitzer Digs Up Troves of Possible Solar Systems in Orion

  • Mystery Of Quintuplet Stars In Milky Way Solved
  • NASA FUSE Satellite Deciphers Key Tracer of Galaxy Evolution
  • Surprising New Telescope Observations Shake Up Galactic Formation Theories
  • Hidden Milky Way Deuterium Found

  • SMART-1 Impact: Last Call For Ground Based Observations
  • Europe Rediscovers The Moon With SMART-1
  • Historical First Lunar Video Disappear In Earth Bound Bureaucracy
  • NASA Provides Further Update On Apollo 11 Tapes

  • Archetype And Quake Global To Develop Dual-Mode GSM-Satellite Modem For GPS Tracking
  • Scientists Critique Satellite Protection
  • Lockheed Martin Completes Fifth Modernized GPS Satellite
  • Raytheon Completes Demonstration of Space-Based Navigation System in India

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement