. 24/7 Space News .
SOLAR SCIENCE
Motions in the Sun reveal inner workings of sunspot cycle
by Staff Writers
Katlenburg-Lindau, Germany (SPX) Jun 26, 2020

Ionized gas inside the Sun moves toward the poles near the surface and toward the equator at the base of the convection zone (at a depth of 200 thousand kilometres or 125 thousand miles).

The Sun's magnetic activity follows an eleven-year cycle. Over the course of a solar cycle, the Sun's magnetic activity comes and goes. During solar maximum, large sunspots and active regions appear on the Sun's surface. Spectacular loops of hot plasma stretch throughout the Sun's atmosphere and eruptions of particles and radiation shoot into interplanetary space.

During solar minimum, the Sun calms down considerably. A striking regularity appears in the so-called butterfly diagram, which describes the position of sunspots in a time-latitude plot. At the beginning of a solar cycle, sunspots emerge at mid-latitudes. As the cycle progresses, they emerge closer and closer to the equator. To explain this "butterfly diagram", solar physicists suspect that the deep magnetic field is carried toward the equator by a large-scale flow.

"Over the course of a solar cycle, the meridional flow acts as a conveyor belt that drags the magnetic field along and sets the period of the solar cycle", says Prof. Dr. Laurent Gizon, MPS Director and first author of the new study. "Seeing the geometry and the amplitude of motions in the solar interior is essential to understanding the Sun's magnetic field", he adds. To this end, Gizon and his team used helioseismology to map the plasma flow below the Sun's surface.

Helioseismology is to solar physics what seismology is to geophysics. Helioseismologists use sound waves to probe the Sun's interior, in much the same way geophysicists use earthquakes to probe the interior of the Earth. Solar sound waves have periods near five minutes and are continuously excited by near surface convection.

The motions associated with solar sound waves can be measured at the Sun's surface by telescopes on spacecrafts or on the ground. In this study, Gizon and his team used observations of sound waves at the surface that propagate in the north-south direction through the solar interior.

These waves are perturbed by the meridional flow: they travel faster along the flow than against the flow. These very small travel-time perturbations (less than 1 second) were measured very carefully and were interpreted to infer the meridional flow using mathematical modeling and computers.

Because it is small, the meridional flow is extremely difficult to see in the solar interior. "The meridional flow is much slower than other components of motion, such as the Sun's differential rotation", Gizon explains. The meridional flow throughout the convection zone is no more than its maximum surface value of 50 kilometers per hour. "To reduce the noise level in the helioseismic measurements, it is necessary to average the measurements over very long periods of time", says Dr. Zhi-Chao Liang of MPS.

The team of scientists analyzed, for the first time, two independent very long time series of data. One was provided by SOHO, the oldest solar observatory in space which is operated by ESA and NASA. The data taken by SOHO's Michelson Doppler Imager (MDI) covers the time from 1996 until 2011.

A second independent data set was provided by the Global Oscillation Network Group (GONG), which combines six ground-based solar telescopes in the USA, Australia, India, Spain, and Chile to offer nearly continuous observations of the Sun since 1995. "The international solar physics community is to be commended for delivering multiple datasets covering the last two solar cycles", says Dr. John Leibacher, a former director of the GONG project.

"This makes it possible to average over long periods of time and to compare answers, which is absolutely essential to validate inferences", he adds.

Gizon and his team find the flow is equatorward at the base of the convection zone, with a speed of only 15 kilometers per hour (running speed). The flow at the solar surface is poleward and reaches up to 50 kilometers per hour. The overall picture is that the plasma goes around in one gigantic loop in each hemisphere.

Remarkably, the time taken for the plasma to complete the loop is approximately 22 years - and this provides the physical explanation for the Sun's eleven-year cycle. Furthermore, sunspots emerge closer to the equator as the solar cycle progresses, as is seen in the butterfly diagram. "All in all, our study supports the basic idea that the equatorward drift of the locations where sunspots emerge is due to the underlying meridional flows", says Dr. Robert Cameron of MPS.

"It remains to be understood why the solar meridional flow looks like it does, and what role the meridional flow plays in controlling magnetic activity on other stars", adds Laurent Gizon.

Research paper


Related Links
Max Planck Institute For Solar System Research
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SOLAR SCIENCE
TRACERS Heliospherics mission enters Phase B
San Antonio TX (SPX) Jun 23, 2020
NASA has approved the Tandem Reconnection and Cusp Electrodynamics Reconnaissance Satellites (TRACERS) mission to proceed to Phase B, which marks the transition from concept study to preliminary flight design. The satellites, led by the University of Iowa (UI) and managed by Southwest Research Institute, are set to launch in late 2023. In addition to providing mission management and science services to UI, SwRI is developing the Analyzer for Cusp Ions (ACI) instrument, which will study how the mag ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Search for benzene on Space Station to resume in July

Thales Alenia Space will provide two key pressurized elements for Axiom commercial space station

NASA renames Washington HQ for 'Hidden Figures' trailblazer

NASA Developing a Plan to Fly Personnel on Suborbital Spacecraft

SOLAR SCIENCE
Gilmour Space achieves 45-second milestone in latest hybrid rocket engine test fire

Virgin Galactic signs agreement with NASA

China launches final satellite to complete rival to GPS

NASA Prepares to Complete Artemis SLS Rocket Structural Testing

SOLAR SCIENCE
How NASA's Mars Helicopter Will Reach the Red Planet's Surface

NASA's new Mars mission will take at least a decade to confirm life

The Launch Is Approaching for NASA's Next Mars Rover, Perseverance

Martian rover motors ahead

SOLAR SCIENCE
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

SOLAR SCIENCE
India ends monopoly of ISRO with new entity to facilitate private players

NASA moving forward to enable a low-earth orbit economy

WA space project to drive industry growth

UK space industry consortium calls for greater SME engagement for future satcom services

SOLAR SCIENCE
Quantum rings in the hold of laser light

Northrop Grumman completes PDR for Overhead Persistent Infrared Subsystem

ESA awards NanoAvionics contract to develop new satellite propulsion technologies

Microsoft ends game streaming, teams up with Facebook

SOLAR SCIENCE
Young giant planet offers clues to formation of exotic worlds

Breakthrough listen releases list of "exotica"

NASA scientist simulates sunsets on other worlds

Space Team Theorizes Rare Exomoon Discovery

SOLAR SCIENCE
Evidence supports 'hot start' scenario and early ocean formation on Pluto

Ocean in Jupiter's moon Europa "could be habitable"

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.