. 24/7 Space News .
NASA Prepares to Complete Artemis SLS Rocket Structural Testing
by Staff Writers
Huntsville AL (SPX) Jun 22, 2020

The liquid oxygen tank structural test article, shown here, for NASA's Space Launch System (SLS) rocket's core stage was the last test article loaded into the test stand July 10, 2019. The liquid oxygen tank is one of two propellant tanks in the rocket's massive core stage that will produce more than 2 million pounds of thrust to help launch Artemis I, the first flight of SLS and NASA's Orion spacecraft to the Moon. Now, the tank will undergo the final test completing a three-year structural test campaign at NASA's Marshall Space Flight Center in Huntsville, Alabama. Tests conducted during this campaign put the rocket's structures from the top of the upper stage to the bottom of the core stage through strenuous tests simulating the forces that the rocket will experience during launch and flight. All four of the core stage structural test articles were manufactured at NASA's Michoud Assembly Facility in New Orleans and delivered by NASA's barge Pegasus to Marshall.

NASA's Space Launch System (SLS) Program is concluding its structural qualification test series with one upcoming final test that will push the design for the rocket's liquid oxygen tank to its limits at NASA's Marshall Space Flight Center in Huntsville, Alabama.

In the name of science, engineers will try to break a structural test article of the tank--on purpose. The liquid oxygen tank's structure is identical to the tank that is part of the SLS core stage, which will provide power to help launch the Artemis missions to the Moon. The tank is enclosed in a cage-like structure that is part of the test stand.

Hydraulic systems will apply millions of pounds of force to push, pull and bend the liquid oxygen tank test article to see just how much pressure the tank can take. The forces simulate what the tank is expected to experience during launch and flight. For the test, the tank will be filled with water to simulate the liquid oxygen propellant used for flight, and when the tank ruptures, the water may create a loud sound as it bursts through the tank's skin.

"We take rocket tanks to extreme limits and break them because pushing systems to the point of failure gives us a data to help us build rockets more intelligently," said Neil Otte, chief engineer for the SLS Stages Office at Marshall. "Breaking the propellant tank today on Earth will provide us with valuable data for safely and efficiently flying SLS on the Artemis missions to the Moon."

Earlier this year, NASA and Boeing engineers subjected the tank to 23 baseline tests that simulate actual flight conditions, and the tank aced the tests. The tank is fitted with thousands of sensors to measure stress, pressure and temperature, while high-speed cameras and microphones capture every moment to identify buckling or cracking in the cylindrical tank wall. This final test will apply controlled forces stronger than those engineers expect the tank to endure during flight, similar to the test that ruptured the liquid hydrogen tank and created noise heard in some Huntsville neighborhoods near Marshall.

This is final test in a series of structural qualification tests that have pushed the rocket's structures to the limits from top to bottom to help ensure the rocket is ready for the Artemis lunar missions. Completion of this upcoming test will mark a major milestone for the SLS Program.

The Marshall team started structural qualification testing on the rocket in May 2017 with an integrated test of the upper part of the rocket stacked together: the Interim Cryogenic Propulsion Stage, the Orion stage adapter and the launch vehicle stage adapter. Then the team moved on to testing the four largest structures that make up the 212-foot-tall core stage.

The last baseline test for Artemis I was completed in March 2020 before the team's access to Marshall was restricted because of the COVID-19 pandemic. The NASA and Boeing team returned to work the first week in June to prepare for conducting the final liquid oxygen test to failure.

The structural qualification tests help verify models showing the structural design can survive flight. Structural testing has been completed on three of the largest core stage structures: the engine section, the intertank, and the liquid hydrogen tank. The liquid oxygen tank has completed baseline testing and will now wrap up core stage testing with the upcoming test to find the tank's point of failure.

"The liquid oxygen tests and the other tests to find the point of failure really put the hardware through the paces," said April Potter, the SLS test project manager for liquid oxygen and liquid hydrogen structural tests. "NASA will now have the information to build upon our systems and push exploration farther than ever before."

The SLS rocket, Orion spacecraft, Gateway and human landing system are part of NASA's backbone for deep space exploration. The Artemis program is the next step in human space exploration. It is part of America's broader Moon to Mars exploration approach, in which astronauts will explore the Moon and gain experience to enable humanity's next giant leap, sending humans to Mars.

Related Links
Space Launch System
Rocket Science News at Space-Travel.Com

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Spacecrafts get a boost in 'aerogravity assisted' interactions
Washington DC (SPX) Jun 19, 2020
In a recent paper published in EPJ Special Topics, Jhonathan O. Murcia Pineros, a post-doctoral researcher at Space Electronics Division, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil, and his co-authors, map the energy variations of the spacecraft orbits during 'aerogravity assisted' (AGA) manoeuvres. A technique in which energy gains are granted to a spacecraft by a close encounter with a planet or other celestial body via that body's atmosphere and gravity. In 201 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

More Hands Make Light Work: Crew Dragon Duo Increases Science Tempo on Space Station

NASA Reveals What Could Be Source of 'Elevated Benzene Level' on ISS

Amyloid formation in the International Space Station

Future space travelers may follow cosmic lighthouses

Launch postponement for Flight VV16 due to weather conditions at the Spaceport

Researchers design a system to reduce the noise of space rockets in the launch phase

Spacecrafts get a boost in 'aerogravity assisted' interactions

SpaceX wants to build offshore spaceports for hypersonic flights around Earth

The Launch Is Approaching for NASA's Next Mars Rover, Perseverance

NASA's new Mars mission will take at least a decade to confirm life

Martian rover motors ahead

Airbus wins next study contract for Martian Sample Fetch Rover

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

UK space industry consortium calls for greater SME engagement for future satcom services

Northrop Grumman to build 2 C-band satellites for Intelsat

Maxar to Build Four 1300-class Geostationary Communications Satellites for Intelsat

SpaceX launches 58 Starlink, 3 SkySat satellites from Florida

Reducing the risk of space debris collision

UK space sector gets a boost with the installation of a giant new satellite test chamber

Northrop Grumman Continues Support for US Air Force Infrared Countermeasures Systems

Hughes Joins with 4-H to Champion Online STEM Education amid Increased Demand for Virtual Learning

Are Planets with Oceans Common in the Galaxy? It's Likely, NASA Scientists Find

As many as six billion Earth-like planets in our galaxy, according to new estimates

Research sheds new light on intelligent life existing across the galaxy

Astronomers discover how long-lived Peter Pan discs evolve

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.