. 24/7 Space News .
TIME AND SPACE
Months-long real-time generation of a time scale based on an optical clock
by Staff Writers
Tokyo, Japan (SPX) Mar 30, 2018

Strontium-87 optical lattice clock.

The National Institute of Information and Communications Technology (NICT) generated a real-time signal of an accurate time scale by combining an optical lattice clock and a hydrogen maser. The signal generated in this optical-microwave hybrid system continued for half a year without interruption.

The resultant "one-second" was more accurate than that of Coordinated Universal Time (UTC) on that date, and the time deviated by 0.8 ns in half a year relative to TT(BIPM), where TT(BIPM) is the most accurate time scale post-processed by the International Bureau of Weights and Measures(BIPM). This demonstration proves the capability to keep time with respect to the future optical definition of the second, which may be realized in next ten years. This achievement was published in an open-access journal Scientific Reports, on March 9, 2018.

National standard times are maintained to be synchronized to UTC. Since the cesium hyperfine transition defines the length of the "one-second", maintaining accurate Cs clocks is straightforward to keep time. Optical clocks, on the other hand, made rapid progress recently and reached much less systematic uncertainty than that of microwave standards. Nevertheless, nobody has so far generated a real-time signal of a time scale using optical clocks because it is still difficult to operate an optical clock continuously for one month or longer.

Researchers in NICT Space-Time Standards Laboratory including atomic physicists and time-composing experts, demonstrated a novel time scale generation, "optical-microwave hybrid time scale", which combines an optical lattice clock with a hydrogen maser (HM). The Strontium-87 lattice clock is sparsely operated for three hours once a week. This operation calibrates the frequency of the HM, and furthermore the measurements in the latest 25 days allow them to predict how the HM ticking rate will change. Then, they can in advance set the adjustment of HM frequency in the following week to compensate the predicted frequency drift.

The resultant time scale was compared with two so-called "paper clocks", UTC and TT(BIPM). UTC is often monitored by the state-of-the-art Cs fountain frequency standards which are operated by national metrology institutes, and the result of the monitoring is reported to BIPM. Once a year in January, BIPM incorporates the result of these calibrations and further makes corrections to past UTC. This is TT(BIPM) and is the most accurate "paper clock". As shown in Fig. 2, the time difference of the optical time scale against UTC expanded to 8 ns in five months, but that against TT(BIPM) remained in less than 1 ns.

These results indicate that the optical time scale is more accurate than UTC and is at least comparable to TT(BIPM) in terms of accuracy and stability. UTC and TT(BIPM) are numerical products computed in deferred time by the cooperation of more than 400 atomic clocks and state-of-the-art Cs fountains all over the world. On the other hand, the signal generated in NICT is a real signal which indeed ticked every second during the six months.

"We serve the society by providing time endlessly without interruptions. The optical-microwave hybrid method demonstrated here brings the benefit of optical frequency standards to time keeping." Tetsuya Ido, director of NICT Space-Time Standards Laboratory said.

Another thing to note is the impact on the future redefinition of the SI second, toward which the community of time and frequency metrology has recently started the discussion. The hybrid method succeeded in evaluating the one-month mean frequency of UTC for all six months, and the results were consistent with other evaluations reported from the state-of-the-art Cs fountains. The capability of calibrating UTC on the basis of optical clocks is one of the prerequisites for the future redefinition.

NICT generates Japan Standard Time (JST). NICT aims to apply this hybrid method to the JST generation system step by step. The next step would be establishing a redundancy of optical frequency references. Another optical lattice clock or single-ion clocks will work. They may utilize those in other laboratories by connecting to them by an optical fiber network or satellite-based frequency transfer.

Tetsuya says, "Highly precise optical clocks are expected to be geodetic sensors to detect the variation of gravitational environment. Such applications demand a reference that remains unchanged. Highly accurate and stable national time scale may play this role that is available in 24h/7d as an infrastructure."

Research paper


Related Links
National Institute of Information and Communications Technology (NICT)
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
More efficient simulators by storing time in a quantum superposition
Singapore (SPX) Mar 06, 2018
Computer models of systems such as a city's traffic flow or neural firing in the brain tends to use up a lot of memory. But a new approach with quantum simulators could significantly cut that memory use by taking a quantum approach to time. The only cost is a diminished record of the past. The suggestion comes from researchers Mile Gu and Thomas Elliott in Singapore, who describe their proposal in a paper published 1 March in npj Quantum Information. Gu works at the Centre for Quantum Technologies ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Inspired by ASU NASA mission, students create space art

Airbus delivers new life support system for the ISS

60 years in orbit for 'grapefruit satellite' - the oldest human object in space

China to become top patent filer within three years: UN

TIME AND SPACE
Chinese scientists developing bee-inspired aerospace vehicle

3D printing rocket engines in SPAIN

Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

TIME AND SPACE
Sol 2000: Roving for 2000 Martian Days

Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Martian oceans formed earlier but weren't as deep as previously thought, study finds

TIME AND SPACE
Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

TIME AND SPACE
Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

TIME AND SPACE
Pressing a button is more challenging than appears

Researchers use 3-D printing to create metallic glass alloys

New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

TIME AND SPACE
UK team to lead European mission to study new planets

TRAPPIST-1 planets provide clues to the nature of habitable worlds

ESA's next science mission to focus on nature of exoplanets

'Oumuamua likely came from a binary star system

TIME AND SPACE
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.