. | . |
Microwave lenses harnessed for multi-beam forming by Staff Writers Paris (ESA) Oct 15, 2020
This highly compact beam forming network has been designed for multi-beam satellite payload antennas. Generating a total of 64 signal beams outputted from a single antenna, this novel design could cover the entire Earth with multiple spot beams from geostationary orbit. "The traditional solution for a multibeam telecommunications satellite payload would be a single feed per signal beam, but only a limited number of feeds are able to be accommodated in front of the satellite antenna, with each feed requiring a dedicated amplifier," explains Petar Jankovic of ESA's Radio Frequency Equipment and Technology section. "This is a highly integrated, lower mass alternative, developed with Airbus in Italy." What looks like a sunburst design is actually a 'Rotman' lens, laid down on a printed circuit board, used to direct and focus microwaves. These are commonly employed in terrestrial radar systems, for instance aboard high-end drones or in-car radar, and are also being looked at for future 5G base stations. A single flat Rotman lens allows beam scanning along a single axis. For this design, eight of these Rotman lenses are stacked horizontally, and eight more are arranged vertically. The result is a two-dimensional array of 64 pencil-shaped signal beams - and this architecture can be leveraged up as desired. "Testing of our prototype demonstrator shows high performance, demonstrating low insertion loss and with the measured worst-case return loss for the beam ports and array ports always better than 15 decibels throughout the full Ka- operative band," adds Petar. "For all our measured beams very regular pointing has been achieved." Almost perfect alignment between simulation and measurement results have been achieved, guided by ESA in-house software that converts mathematical models of the lenses into geometric structures, combined with commercial software used to simulate the prototype in advance of its manufacture and testing. Developed through ESA's long-running Advanced Research in Telecommunications Systems (ARTES) programme, this beam forming network demonstrator was designed and built using space-qualified solutions, materials and processes. The next step would be to manufacture a qualification model to qualify the design at equipment level for flight.
Northrop Grumman's next generation digital antenna passes key milestone Linthicum MD (SPX) Oct 14, 2020 Northrop Grumman is moving into the design phase of the Air Force Research Laboratory (AFRL) Aether Spy next-generation multifunction radar program after successfully completing the System Requirements Review (SRR). Aether Spy advances multifunction wideband digital Active Electronically Scanned Array (AESA) technology based on the advanced microelectronics created on the DARPA Arrays on Commercial Timescales (ACT) program. It will develop the next generation of integrated circuits that include ad ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |