. | . |
Microseeding: A new way to overcome hemihedral twinning? by Staff Writers Washington DC (SPX) Dec 20, 2016
Twinning is a crystal-growth disorder in which the specimen is composed of distinct domains whose orientations differ but are related in a particular, well-defined way. Twinning, which is a known problem in protein crystallography, usually hampers high-quality crystal structure determination unless it is detected and either avoided or corrected. Although effective computational methods have been developed for the determination of structures using data from twinned crystals (known as 'detwinning'), if possible it is preferable to obtain crystals that are not twinned.In some cases, optimising the length of the protein fragment used for crystallisation can lead to the growth of untwinned crystals, but this is a time-consuming process. In a recent paper in Acta Crystallographica Section F, microseeding was used to produce untwinned crystals of LigM, an O-demethylase from Sphingobium sp. SYK-6, using twinned crystals as seeds. Microseeding is one of several seeding techniques that are used to successfully separate nucleation events from crystal-growth events. In this technique, crystals are used as seeds and introduced into new drops which are equilibrated at lower levels of supersaturation. It has frequently been used to improve reproducibility in crystallization and can yield different crystal forms. In the work described by Harada et al. [(2016). Acta Cryst. F72, 897-902; doi:10.1107/S2053230X16018665], around 50% of the initially obtained crystals of LigM were hemihedrally twinned. These crystals were then used as a seed stock for microseeding. In combination with optimization of the reservoir solution, this led to crystals that were not twinned and belonged to a different space group. It is hoped that this method will have potential as a more general simple method for overcoming hemihedral twinning in protein crystals.
Related Links International Union of Crystallography Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |