. 24/7 Space News .
Microscopy unveils lithium-rich transition metal oxides
by Staff Writers
Berkeley CA (SPX) Nov 06, 2015

On the right the cube represents the structure of lithium- and manganese- rich transition metal oxides. The models on the left show the structure from three different directions, which correspond to the STEM images of the cube. Image courtesy Lawrence Berkeley National Laboratory. For a larger version of this image please go here.

Using complementary microscopy and spectroscopy techniques, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) say they have solved the structure of lithium- and manganese-rich transition metal oxides, a potentially game-changing battery material and the subject of intense debate in the decade since it was discovered.

Researchers have been divided into three schools of thought on the material's structure, but a team led by Alpesh Khushalchand Shukla and Colin Ophus spent nearly four years analyzing the material and concluded that the least popular theory is in fact the correct one.

Their results were published online in the journal Nature Communications in a paper titled, "Unraveling structural ambiguities in lithium- and manganese- rich transition metal oxides." Other co-authors were Berkeley Lab scientists Guoying Chen and Hugues Duncan and SuperSTEM scientists Quentin Ramasse and Fredrik Hage.

This material is important because the battery capacity can potentially be doubled compared to the most commonly used Li-ion batteries today due to the extra lithium in the structure. "However, it doesn't come without problems, such as voltage fade, capacity fade, and DC resistance rise," said Shukla. "It is immensely important that we clearly understand the bulk and surface structure of the pristine material. We can't solve the problem unless we know the problem."

A viable battery with a marked increase in storage capacity would not only shake up the cell phone and laptop markets, it would also transform the market for electric vehicles (EVs).

"The problem with the current lithium-ion batteries found in laptops and EVs now is that they have been pushed almost as far as they can go," said Ophus. "If we're going to ever double capacity, we need new chemistries."

Using state-of-the-art electron microscopy techniques at the National Center for Electron Microscopy (NCEM) at Berkeley Lab's Molecular Foundry and at SuperSTEM in Daresbury, United Kingdom, the researchers imaged the material at atomic resolution. Because previous studies have been ambiguous about the structure, the researchers minimized ambiguity by looking at the material from different directions, or zone axes.

"Misinterpretations from electron microscopy data are possible because individual two-dimensional projections do not give you the three-dimensional information needed to solve a structure," Shukla said. "So you need to look at the sample in as many directions as you can."

Scientists have been divided on whether the material structure is single trigonal phase, double phase, or defected single monoclinic phase.

The "phase" of a material refers to the arrangement of the atoms with respect to each other; Ophus, a Project Scientist at the Molecular Foundry, explains how easy it is for researchers to reach different conclusions: "The two-phase and one-phase model are very closely related. It's not like comparing an apple to an orange--it's more like comparing an orange and a grapefruit from very far away. It's hard to tell the difference between the two."

In addition to viewing the material at atomic resolution along multiple zone axes, the researchers made another important decision, that is, to view entire particles rather than just a subsection. "Imaging with very high fields of view was also critical in solving the structure," Shukla said. "If you just look at one small part you can't say that the whole particle has that structure."

Putting the evidence together, Shukla and Ophus are fairly convinced that the material is indeed defected single phase. "Our paper gives very strong support for the defected single-phase monoclinic model and rules out the two-phase model, at least in the range of compositions used in our study," said Ophus, whose expertise is in understanding structure using a combination of computational methods and experimental results.

Added Ramasse, director of SuperSTEM: "We need to know what goes on at the atomic scale in order to understand the macroscopic behavior of new emerging materials, and the advanced electron microscopes available at national facilities such as SuperSTEM or NCEM are essential in making sure their potential is fully realized."

In addition to solving the structure of the bulk material, which has been studied by other research groups, they also solved the surface structure, which is different from the bulk and consists of just a few layers of atoms on select crystallographic facets. "The intercalation of lithium starts at the surface, so understanding the surface of the pristine material is very important," Shukla said.

On top of the STEM (scanning transmission electron microscopy) imaging that they used for the bulk, they had to use additional techniques to solve the surface, including EELS (electron energy loss spectroscopy) and XEDS (X-ray energy dispersive spectroscopy).

"We show for the first time which surface structure occurs, how thick it is, how it's oriented in relation to the bulk, and in particular on what facets the surface phase does and doesn't exist," Ophus said.

An important part of the study was the quantity and quality of the samples studied. They started with lab-made samples, prepared by Duncan, a postdoc in the lab of Chen, a chemist whose research focuses on lithium-ion batteries.

They used a molten-salt method that produces high-quality discrete primary particles that are impurity-free, making them ideal candidates for performing fundamental characterization. Taking a conservative approach, the researchers also decided to procure and analyze two commercial samples from two different companies.

"We could have finished the paper a year earlier, but because there was so much controversy we wanted to make sure we didn't leave any stone unturned," said Shukla who was a scientist with Berkeley Lab's Energy Storage and Distributed Resources Division at the time he did this work but has since become a consulting scientist at Envia Systems while continuing to be affiliated with Berkeley Lab as a user of the Molecular Foundry.

In the end, it took nearly four years to complete the research. Ophus calls it a "tour de force of microscopy" because of its thoroughness.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Lawrence Berkeley National Laboratory
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
Cyclic healing removes defects in metals while maintaining strength
Pittsburgh PA (SPX) Nov 09, 2015
When designing a new material, whether for an airplane, car, bridge, mobile device, or biological implant, engineers strive to make the material strong and defect-free. However, methods conventionally used to control the amount of defects in a material, such as applying heat or mechanical stress, can also have undesirable consequences in terms of the material's strength, structure and performanc ... read more

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

Martian desiccation

Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

Magic plant discovery could lead to growing food in space

NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

Space Station offers valuable lessons about life support systems

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

SpaceLoft demonstrates capability to eject separate payloads requiring independent re-entry

Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

New ORNL catalyst features unsurpassed selectivity

Cyclic healing removes defects in metals while maintaining strength

Microscopy unveils lithium-rich transition metal oxides

Scanning reveals anomalies in Great Pyramid at Giza

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.